又∵. 我們只要證明方程在內(nèi)有解即可. 查看更多

 

題目列表(包括答案和解析)

要證:a2+b2-1-a2b2≤0,只要證明( 。
A、2ab-1-a2b2≤0
B、a2+b2-1-
a4+b4
2
≤0
C、
a+b2
2
-1-a2b2≤0
D、(a2-1)(b2-1)≥0

查看答案和解析>>

若數(shù)列{an},{bn}中,a1=a,b1=b,
an=-2an-1+4bn-1
bn=-5an-1+7bn-1
,(n∈N,n≥2).請按照要求完成下列各題,并將答案填在答題紙的指定位置上.
(1)可考慮利用算法來求am,bm的值,其中m為給定的數(shù)據(jù)(m≥2,m∈N).右圖算法中,虛線框中所缺的流程,可以為下面A、B、C、D中的
ACD
ACD

(請?zhí)畛鋈看鸢福?BR>A、B、
C、D、

(2)我們可證明當a≠b,5a≠4b時,{an-bn}及{5an-4bn}均為等比數(shù)列,請按答紙題要求,完成一個問題證明,并填空.
證明:{an-bn}是等比數(shù)列,過程如下:an-bn=(-2an-1+4bn-1)+(5an-1-7bn-1)=3an-1-3bn-1=3(an-1-bn-1
所以{an-bn}是以a1-b1=a-b≠0為首項,以
3
3
為公比的等比數(shù)列;
同理{5an-4bn}是以5a1-4b1=5a-4b≠0為首項,以
2
2
為公比的等比數(shù)列
(3)若將an,bn寫成列向量形式,則存在矩陣A,使
an
bn
=A
an-1
bn-1
=A(A
an-2
bn-2
)=A2
an-2
bn-2
=…=An-1
a1
b1
,請回答下面問題:
①寫出矩陣A=
-24
-57
-24
-57
;  ②若矩陣Bn=A+A2+A3+…+An,矩陣Cn=PBnQ,其中矩陣Cn只有一個元素,且該元素為Bn中所有元素的和,請寫出滿足要求的一組P,Q:
P=
1 
1 
,Q=
1
1
P=
1 
1 
,Q=
1
1
; ③矩陣Cn中的唯一元素是
2n+2-4
2n+2-4

計算過程如下:

查看答案和解析>>

看下面的問題:1+2+3+…+( 。10 000這個問題的答案雖然不唯一,但是我們只要確定出滿足條件的最小正整數(shù)n0,括號內(nèi)填寫的數(shù)字只要大于或等于n0即可.試寫出尋找滿足條件的最小正整數(shù)n0的算法并畫出相應(yīng)的程序框圖.

查看答案和解析>>

(2012•虹口區(qū)一模)已知Sn是數(shù)列{an}的前n項和,2Sn=Sn-1-(
1
2
)n-1+2
(n≥2,n∈N*),且a1=
1
2

(1)求a2的值,并寫出an和an+1的關(guān)系式;
(2)求數(shù)列{an}的通項公式及Sn的表達式;
(3)我們可以證明:若數(shù)列{bn}有上界(即存在常數(shù)A,使得bn<A對一切n∈N*恒成立)且單調(diào)遞增;或數(shù)列{bn}有下界(即存在常數(shù)B,使得bn>B對一切n∈N*恒成立)且單調(diào)遞減,則
lim
n→∞
bn
存在.直接利用上述結(jié)論,證明:
lim
n→∞
Sn
存在.

查看答案和解析>>

我們可以證明:已知sinθ=t(|t|≤1),則sin
θ
2
至多有4個不同的值.
(1)當t=
3
2
時,寫出sin
θ
2
的所有可能值;
(2)設(shè)實數(shù)t由等式log
1
2
2
(t+1)+a•log
1
2
(t+1)+b=0
確定,若sin
θ
2
總共有7個不同的值,求常數(shù)a、b的取值情況.

查看答案和解析>>


同步練習(xí)冊答案