(3)證明:對于整數(shù)n≥2, 查看更多

 

題目列表(包括答案和解析)

對于正整數(shù)k,用g(k)表示k的最大奇因數(shù),如:g(1)=1,g(2)=1,g(3)=3,….記an=g(1)+g(2)+g(3)+…+g(2n),其中n是正整數(shù).
(I)寫出a1,a2,a3,并歸納猜想an與an-1(n≥2,n∈N)的關(guān)系式;
(II)證明(I)的結(jié)論;
(Ⅲ)求an的表達(dá)式.

查看答案和解析>>

對于各項均為正數(shù)且各有m項的數(shù)列{an},{bn},按如下方法定義數(shù)列{tn}:t0=0,
tn=
tn-1-an+bntn-1an
bntn-1an
(n=1,2…m),并規(guī)定數(shù)列{an}到{bn}的“并和”為Sab=a1+a2+…+an+tm
(Ⅰ)若m=3,數(shù)列{an}為3,7,2;數(shù)列{bn}為5,4,6,試求出t1、t2、t3的值以及數(shù)列{an}到{bn}的并和Sab;
(Ⅱ)若m=4,數(shù)列{an}為3,2,3,4;數(shù)列{bn}為6,1,x,y,且Sab=17,求證:y≤5;
(Ⅲ)若m=6,下表給出了數(shù)列{an},{bn}:
精英家教網(wǎng)
如果表格中各列(整列)的順序可以任意排列,每種排列都有相應(yīng)的并和Sab,試求Sab的最小值,并說明理由.

查看答案和解析>>

對于實數(shù)x,將滿足“0≤y<1且x-y為整數(shù)”的實數(shù)y稱為實數(shù)x的小數(shù)部分,用記號{x}表示.例如{1.2}=0.2,{-1.2}=0.8,{
8
7
}=
1
7
.對于實數(shù)a,無窮數(shù)列{an}滿足如下條件:a1={a},an+1=
1
an
  ,an≠0
0, an=0
  其中n=1,2,3,….
(1)若a=
2
,求a2,a3 并猜想數(shù)列{a}的通項公式(不需要證明);
(2)當(dāng)a>
1
4
時,對任意的n∈N*,都有an=a,求符合要求的實數(shù)a構(gòu)成的集合A;
(3)若a是有理數(shù),設(shè)a=
p
q
 (p是整數(shù),q是正整數(shù),p,q互質(zhì)),對于大于q的任意正整數(shù)n,是否都有an=0成立,證明你的結(jié)論.

查看答案和解析>>

對于數(shù)列{xn},從中選取若干項,不改變它們在原來數(shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個子數(shù)列.某同學(xué)在學(xué)習(xí)了這一個概念之后,打算研究首項為正整數(shù)a,公比為正整數(shù)q(q>0)的無窮等比數(shù)列{an}的子數(shù)列問題.為此,他任取了其中三項ak,am,an(k<m<n).
(1)若ak,am,an(k<m<n)成等比數(shù)列,求k,m,n之間滿足的等量關(guān)系;
(2)他猜想:“在上述數(shù)列{an}中存在一個子數(shù)列{bn}是等差數(shù)列”,為此,他研究了ak+an與2an的大小關(guān)系,請你根據(jù)該同學(xué)的研究結(jié)果來判斷上述猜想是否正確;
(3)他又想:在首項為正整數(shù)a,公差為正整數(shù)d的無窮等差數(shù)列中是否存在成等比數(shù)列的子數(shù)列?請你就此問題寫出一個正確命題,并加以證明.

查看答案和解析>>

對于實數(shù)a,將滿足“0≤y<1且x-y為整數(shù)”的實數(shù)y稱為實數(shù)x的小數(shù)部分,用記號||x||表示,對于實數(shù)a,無窮數(shù)列{an}滿足如下條件:a1=|a,an+1=其中n=1,2,3,…
(1)若a=,求數(shù)列{an};
(2)當(dāng)a時,對任意的n∈N*,都有an=a,求符合要求的實數(shù)a構(gòu)成的集合A.
(3)若a是有理數(shù),設(shè)a= (p 是整數(shù),q是正整數(shù),p、q互質(zhì)),問對于大于q的任意正整數(shù)n,是否都有an=0成立,并證明你的結(jié)論.

查看答案和解析>>


同步練習(xí)冊答案