題目列表(包括答案和解析)
(本小題滿分14分)
在△OAB的邊OA,OB上分別有一點(diǎn)P,Q,已知:=1:2, :=3:2,連結(jié)AQ,BP,設(shè)它們交于點(diǎn)R,若=a,=b.
(1)用a與 b表示;
(2)過R作RH⊥AB,垂足為H,若| a|=1, | b|=2, a與 b的夾角的取值范圍.
(本小題滿分14分)已知A(8,0),B、C兩點(diǎn)分別在y軸和x軸上運(yùn)動(dòng),并且滿足。
(1)求動(dòng)點(diǎn)P的軌跡方程。
(2)若過點(diǎn)A的直線L與動(dòng)點(diǎn)P的軌跡交于M、N兩點(diǎn),且
其中Q(-1,0),求直線L的方程.
(本小題滿分14分)
已知函數(shù),a>0,w.w.w.k.s.5.u.c.o.m
(Ⅰ)討論的單調(diào)性;
(Ⅱ)設(shè)a=3,求在區(qū)間{1,}上值域。期中e=2.71828…是自然對數(shù)的底數(shù)。
(本小題滿分14分)
已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=其中λ為實(shí)數(shù),n為正整數(shù)。
(Ⅰ)對任意實(shí)數(shù)λ,證明數(shù)列{an}不是等比數(shù)列;
(Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(Ⅲ)設(shè)0<a<b,Sn為數(shù)列{bn}的前n項(xiàng)和。是否存在實(shí)數(shù)λ,使得對任意正整數(shù)n,都有
a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由。
(本小題滿分14分)
如圖(1),是等腰直角三角形,,、分別為、的中點(diǎn),將沿折起, 使在平面上的射影恰為的中點(diǎn),得到圖(2).
(Ⅰ)求證:;
(Ⅱ)求三棱錐的體積.
第Ⅰ卷
一、選擇題
題號(hào)
1
2
3
4
5
6
7
8
答案
B
B
B
A
C
A
D
C
第Ⅱ卷
二、填空題
9、3 , ; 10、; 11、(A); (B);(C)(); 12、0.5 13、28 ,
三、解答題
14、(本小題滿分12分)
解:(Ⅰ)=
=+
=+
所以,的最小正周期
(Ⅱ)
由三角函數(shù)圖象知:
的取值范圍是
15、(本小題滿分12分)
方法一:
證:(Ⅰ)在Rt△BAD中,AD=2,BD=,
∴AB=2,ABCD為正方形,
因此BD⊥AC.
∵PA⊥平面ABCD,BDÌ平面ABCD,
∴BD⊥PA .
又∵PA∩AC=A
∴BD⊥平面PAC.
解:(Ⅱ)由PA⊥面ABCD,知AD為PD在平面ABCD的射影,又CD⊥AD,
∴CD⊥PD,知∠PDA為二面角P―CD―B的平面角.
又∵PA=AD,
∴∠PDA=450 .
(Ⅲ)∵PA=AB=AD=2
∴PB=PD=BD=
設(shè)C到面PBD的距離為d,由,
有,
即,
得
方法二:
證:(Ⅰ)建立如圖所示的直角坐標(biāo)系,
則A(0,0,0)、D(0,2,0)、P(0,0,2).
在Rt△BAD中,AD=2,BD=,
∴AB=2.
∴B(2,0,0)、C(2,2,0),
∴
∵
即BD⊥AP,BD⊥AC,又AP∩AC=A,
∴BD⊥平面PAC.
解:(Ⅱ)由(Ⅰ)得.
設(shè)平面PCD的法向量為,則,
即,∴
故平面PCD的法向量可取為
∵PA⊥平面ABCD,∴為平面ABCD的法向量.
設(shè)二面角P―CD―B的大小為q,依題意可得,
∴q = 450 .
(Ⅲ)由(Ⅰ)得
設(shè)平面PBD的法向量為,則,
即,∴x=y=z
故平面PBD的法向量可取為.
∵,
∴C到面PBD的距離為
16、(本小題滿分14分)
解:(1)設(shè)“甲射擊4次,至少1次未擊中目標(biāo)”為事件A,則其對立事件為“4次均擊中目標(biāo)”,則
(2)設(shè)“甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)3次”為事件B,則
(3)設(shè)“乙恰好射擊5次后,被中止射擊”為事件C,由于乙恰好射擊5次后被中止射擊,故必然是最后兩次未擊中目標(biāo),第三次擊中目標(biāo),第一次及第二次至多有一次未擊中目標(biāo)。
故
17、(本小題滿分14分)
解:(Ⅰ)由 得
即
可得
因?yàn)?sub>,所以 解得,因而
(Ⅱ)因?yàn)?sub>是首項(xiàng)、公比的等比數(shù)列,故
則數(shù)列的前n項(xiàng)和
前兩式相減,得
即
18、(本小題滿分14分)
解:(1) ,設(shè)切點(diǎn)為,則曲線在點(diǎn)P的切線的斜率,由題意知有解,
∴即.
(2)若函數(shù)可以在和時(shí)取得極值,
則有兩個(gè)解和,且滿足.
易得.
(3)由(2),得.
根據(jù)題意,()恒成立.
∵函數(shù)()在時(shí)有極大值(用求導(dǎo)的方法),
且在端點(diǎn)處的值為.
∴函數(shù)()的最大值為.
所以.
19、(本小題滿分14分)
解:(1)∵成等比數(shù)列 ∴
設(shè)是橢圓上任意一點(diǎn),依橢圓的定義得
即為所求的橢圓方程.
(2)假設(shè)存在,因與直線相交,不可能垂直軸
因此可設(shè)的方程為:由
①
方程①有兩個(gè)不等的實(shí)數(shù)根
∴、
設(shè)兩個(gè)交點(diǎn)、的坐標(biāo)分別為 ∴
∵線段恰被直線平分 ∴
∵ ∴ ③ 把③代入②得
∵ ∴ ∴解得或
∴直線的傾斜角范圍為
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com