圖1 查看更多

 

題目列表(包括答案和解析)

60、圖1是某縣參加2007年高考的學(xué)生身高條形統(tǒng)計(jì)圖,從左到右的各條形表示的學(xué)生人數(shù)依次記為A1、A2、…、A10(如A2表示身高(單位:cm)[150,155)內(nèi)的學(xué)生人數(shù)).圖2是統(tǒng)計(jì)圖1中身高在一定范圍內(nèi)學(xué)生人數(shù)的一個(gè)算法流程圖.現(xiàn)要統(tǒng)計(jì)身高在160~180cm(含160cm,不含180cm))的學(xué)生人數(shù),那么在流程圖中的判斷框內(nèi)應(yīng)填寫的條件是
i<8

查看答案和解析>>

圖1是某種稱為“凹槽”的機(jī)械部件的示意圖,圖2是凹槽的橫截面(陰影部分)示意圖,其中四邊形ABCD是矩形,弧CmD是半圓,凹槽的橫截面的周長為4.已知凹槽的強(qiáng)度與橫截面的面積成正比,比例系數(shù)為
3
,設(shè)AB=2x,BC=y.
精英家教網(wǎng)
(1)寫出y關(guān)于x函數(shù)表達(dá)式,并指出x的取值范圍;
(2)求當(dāng)x取何值時(shí),凹槽的強(qiáng)度最大.

查看答案和解析>>

9、圖1是某縣參加2007年高考的學(xué)生身高條形統(tǒng)計(jì)圖,從左到右的各條形表示的學(xué)生人數(shù)依次記為A1,A2,…,A10(如A2表示身高(單位:cm)在[150,155)內(nèi)的學(xué)生人數(shù))圖2是統(tǒng)計(jì)圖1中身高在一定范圍內(nèi)學(xué)生人數(shù)的一個(gè)算法流程圖.現(xiàn)要統(tǒng)計(jì)身高在160~180cm(含160cm,不含180cm)的學(xué)生人數(shù),那么在流程圖中的判斷框內(nèi)應(yīng)填寫的條件是( 。

查看答案和解析>>

12、圖1是某工廠2009年9月份10個(gè)車間產(chǎn)量統(tǒng)計(jì)條形圖,條形圖從左到右表示各車間的產(chǎn)量依次記為A1,A2…,A10(如A3表示3號(hào)車間的產(chǎn)量為950件).圖2是統(tǒng)計(jì)圖1中產(chǎn)量在一定范圍內(nèi)車間個(gè)數(shù)的一個(gè)算法流程圖.那么運(yùn)行該算法流程后輸出的結(jié)果是
4

查看答案和解析>>

圖1是一個(gè)水平擺放的小正方體木塊,圖2,圖3是由這樣的小正方體木塊疊放而成的,按照這樣的規(guī)律放下去,至第五個(gè)疊放的圖形中,小正方體木塊總數(shù)是:
 

精英家教網(wǎng)

查看答案和解析>>

CACD CCBA

9、      10、2:1      11、    12、      13、4

14、a<-1   15、

 

16、

17、解:(I)依題意

                                                            …………2分

      

                                                                    …………4分

         bn=8+8×(n-1)=8n                                   …………5分

(II)                   …………6分

                

 

                                                    …………12分

18、(1)3

(2)底面邊長為2,高為4是,體積最大,最大體積為16

19、

略解、(1)因?yàn)閒′(x)=3ax2+2x-1,依題意存在(2,+∞)的非空子區(qū)間使3ax2+2x-1>0成立,即 在x∈(2,+∞)某子區(qū)間上恒成立,令h(x)=,求得h(x)的最小值為,故

(2)由已知a>0

令f′(x)=3ax2+2x-1>0

故f(x)在區(qū)間()上是減函數(shù), 即f(x)在區(qū)間()上恒大于零。故當(dāng)a>0時(shí),函數(shù)在f(x)在區(qū)間()上不存在零點(diǎn)

20、(1)f(1)=3………………………………………………………………………………(1分)

        f(2)=6………………………………………………………………………………(2分)

        當(dāng)x=1時(shí),y=2n,可取格點(diǎn)2n個(gè);當(dāng)x=2時(shí),y=n,可取格點(diǎn)n個(gè)

        ∴f(n)=3n…………………………………………………………………………(4分)

  

   (2)………………………………………………(9分)

       

        ∴T1<T2=T3>T4>…>Tn

        故Tn的最大值是T2=T3=

        ∴m≥………………………………………………………………()

 

 

21、解:(Ⅰ)設(shè),

,      …………………2分

                   …………………3分

.                 ………………………………………………4分

∴動(dòng)點(diǎn)M的軌跡C是以O(shè)(0,0)為頂點(diǎn),以(1,0)為焦點(diǎn)的拋物線(除去原點(diǎn)).

             …………………………………………5分

(Ⅱ)解法一:(1)當(dāng)直線垂直于軸時(shí),根據(jù)拋物線的對稱性,有

                                                         ……………6分

(2)當(dāng)直線軸不垂直時(shí),依題意,可設(shè)直線的方程為,,則A,B兩點(diǎn)的坐標(biāo)滿足方程組

消去并整理,得

,

.   ……………7分

設(shè)直線AEBE的斜率分別為,則:

.  …………………9分

,

,

,

.

綜合(1)、(2)可知.                  …………………10分

解法二:依題意,設(shè)直線的方程為,,則A,B兩點(diǎn)的坐標(biāo)滿足方程組:

消去并整理,得

,

. ……………7分

設(shè)直線AEBE的斜率分別為,則:

.  …………………9分

,

,

.        ……………………………………………………10分

(Ⅲ)假設(shè)存在滿足條件的直線,其方程為,AD的中點(diǎn)為,AD為直徑的圓相交于點(diǎn)F、G,FG的中點(diǎn)為H,則,點(diǎn)的坐標(biāo)為.

,

,

 .                  …………………………12分

,

,得

此時(shí),.

∴當(dāng),即時(shí),(定值).

∴當(dāng)時(shí),滿足條件的直線存在,其方程為;當(dāng)時(shí),滿足條件的直線不存在.    

 

 


同步練習(xí)冊答案