查看更多

 

題目列表(包括答案和解析)

選做題:(甲、乙兩題任選一題作答)
甲、如圖,正三棱柱ABC-A1B1C1的底面邊長為a,側(cè)棱長為
2
a

(Ⅰ)建立適當?shù)淖鴺讼担懗鳇cA、B、A1、C1的坐標;
(Ⅱ)求AC1與側(cè)面ABB1A1所成的角

乙、如圖,正方形ABCD、ABEF的邊長都是1,而且平面ABCD、ABEF互相垂直.點M在AC上移動,點N在BF上移動,若CM=BN=a(0<a<
2
)

(Ⅰ)求MN的長;
(Ⅱ)當a為何值時,MN的長最小;
(Ⅲ)當MN長最小時,求面MNA與面MNB所成的二面角α的大。
精英家教網(wǎng)

查看答案和解析>>

精英家教網(wǎng)選做題(考生只能從A、B、C題中選作一題)
A、已知直線x+2y-4=0與
x=2-3cosθ
y=1+3sinθ
(θ為參數(shù))相交于A、B兩點,則|AB|=
 

B、若關(guān)于x的方程x2+4x+|a-1|+|a+1|=0有實根,則實數(shù)a的取值范圍為
 

C、如圖,⊙O的直徑AB=6cm,P是延長線上的一點,過點P作⊙O的切線,切點為C,連接AC,若∠CAP=30°,
則PC=
 
cm.

查看答案和解析>>

13、選做題:若a,b,c>0,且a2+ab+ac+bc=4,則2a+b+c的最小值為
4

查看答案和解析>>

精英家教網(wǎng)選做題(請考生在以下三個小題中任選一題作答,如果多做,則按所做的第一題評閱記分)
(1)若M,N分別是曲線ρ=2cosθ和ρsin(θ-
π
4
)=
2
2
上的動點,則M,N兩點間的距離的最小值是
 
;
(2)不等式|2x-1|-x<1的解集是
 
;
(3)如圖,過點P作圓O的割線PAB與切線PE,E為切點,連接AE,BE,∠APE的平分線與AE,BE分別交于點C,D,若∠AEB=30°,則∠PCE=
 
°;

查看答案和解析>>

精英家教網(wǎng)選做題(請考生在以下三個小題中任選一題作答,如果多做,則按所做的第一題評閱記分)
(1)已知曲線C的參數(shù)方程為
x=1+2t
y=at2
(t為參數(shù),a∈R),點M(5,4)在曲線C 上,則曲線C的普通方程為
 

(2)已知不等式x+|x-2c|>1的解集為R,則正實數(shù)c的取值范圍是
 

(3)如圖,PC切圓O于點C,割線PAB經(jīng)過圓心A,PC=4,PB=8,則S△OBC
 

查看答案和解析>>

CACD CCBA

9、      10、2:1      11、    12、      13、4

14、a<-1   15、

 

16、

17、解:(I)依題意

                                                            …………2分

      

                                                                    …………4分

         bn=8+8×(n-1)=8n                                   …………5分

(II)                   …………6分

                

 

                                                    …………12分

18、(1)3

(2)底面邊長為2,高為4是,體積最大,最大體積為16

19、

略解、(1)因為f′(x)=3ax2+2x-1,依題意存在(2,+∞)的非空子區(qū)間使3ax2+2x-1>0成立,即 在x∈(2,+∞)某子區(qū)間上恒成立,令h(x)=,求得h(x)的最小值為,故

(2)由已知a>0

令f′(x)=3ax2+2x-1>0

故f(x)在區(qū)間()上是減函數(shù), 即f(x)在區(qū)間()上恒大于零。故當a>0時,函數(shù)在f(x)在區(qū)間()上不存在零點

20、(1)f(1)=3………………………………………………………………………………(1分)

        f(2)=6………………………………………………………………………………(2分)

        當x=1時,y=2n,可取格點2n個;當x=2時,y=n,可取格點n個

        ∴f(n)=3n…………………………………………………………………………(4分)

  

   (2)………………………………………………(9分)

       

        ∴T1<T2=T3>T4>…>Tn

        故Tn的最大值是T2=T3=

        ∴m≥………………………………………………………………()

 

 

21、解:(Ⅰ)設(shè),

,      …………………2分

                   …………………3分

.                 ………………………………………………4分

∴動點M的軌跡C是以O(shè)(0,0)為頂點,以(1,0)為焦點的拋物線(除去原點).

             …………………………………………5分

(Ⅱ)解法一:(1)當直線垂直于軸時,根據(jù)拋物線的對稱性,有;

                                                         ……………6分

(2)當直線軸不垂直時,依題意,可設(shè)直線的方程為,,則A,B兩點的坐標滿足方程組

消去并整理,得

,

.   ……………7分

設(shè)直線AEBE的斜率分別為,則:

.  …………………9分

,

,

,

.

綜合(1)、(2)可知.                  …………………10分

解法二:依題意,設(shè)直線的方程為,,則A,B兩點的坐標滿足方程組:

消去并整理,得

,

. ……………7分

設(shè)直線AEBE的斜率分別為,則:

.  …………………9分

,

,

.        ……………………………………………………10分

(Ⅲ)假設(shè)存在滿足條件的直線,其方程為,AD的中點為AD為直徑的圓相交于點F、G,FG的中點為H,則點的坐標為.

,

,

 .                  …………………………12分

,

,得

此時,.

∴當,即時,(定值).

∴當時,滿足條件的直線存在,其方程為;當時,滿足條件的直線不存在.    

 

 


同步練習冊答案