題目列表(包括答案和解析)
某單位最近組織了一次健身活動,活動分為登山組和游泳組,且每個職工至多參加了其中一組。在參加活動的職工中,青年人占42.5%,中年人占47.5%,老年人占10%。登山組的職工占參加活動總?cè)藬?shù)的,且該組中,青年人占50%,中年人占40%,老年人占10%。為了了解各組不同的年齡層次的職工對本次活動的滿意程度,現(xiàn)用分層抽樣的方法從參加活動的全體職工中抽取一個容量為200的樣本。試確定
(Ⅰ)游泳組中,青年人、中年人、老年人分別所占的比例;
(Ⅱ)游泳組中,青年人、中年人、老年人分別應(yīng)抽取的人數(shù)。
本小題主要考查分層抽樣的概念和運算,以及運用統(tǒng)計知識解決實際問題的能力。
(遼寧卷理19)如圖,在棱長為1的正方體
中,AP=BQ=b(0<b<1),截面PQEF∥,截面PQGH∥.
(Ⅰ)證明:平面PQEF和平面PQGH互相垂直;
(Ⅱ)證明:截面PQEF和截面PQGH面積之和是定值,
并求出這個值;
(Ⅲ)若與平面PQEF所成的角為,求與平面PQGH所成角的正弦值.
說明:本小題主要考查空間中的線面關(guān)系,面面關(guān)系,解三角形等基礎(chǔ)知識,考查空間想象能力與邏輯思維能力。滿分12分.
(遼寧卷理19)如圖,在棱長為1的正方體
中,AP=BQ=b(0<b<1),截面PQEF∥,截面PQGH∥.
(Ⅰ)證明:平面PQEF和平面PQGH互相垂直;
(Ⅱ)證明:截面PQEF和截面PQGH面積之和是定值,
并求出這個值;
(Ⅲ)若與平面PQEF所成的角為,求與平面PQGH所成角的正弦值.
說明:本小題主要考查空間中的線面關(guān)系,面面關(guān)系,解三角形等基礎(chǔ)知識,考查空間想象能力與邏輯思維能力。滿分12分.
已知函數(shù)其中a>0.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個零點,求a的取值范圍;
(III)當(dāng)a=1時,設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,-1]上的最小值。
【考點定位】本小題主要考查導(dǎo)數(shù)的運算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、函數(shù)的零點,函數(shù)的最值等基礎(chǔ)知識.考查函數(shù)思想、分類討論思想.考查綜合分析和解決問題的能力.
(本小題滿分12分)
有編號為,,…的10個零件,測量其直徑(單位:cm),得到下面數(shù)據(jù):
其中直徑在區(qū)間[1.48,1.52]內(nèi)的零件為一等品。
(Ⅰ)從上述10個零件中,隨機抽取一個,求這個零件為一等品的概率;
(Ⅱ)從一等品零件中,隨機抽取2個.
(。┯昧慵木幪柫谐鏊锌赡艿某槿〗Y(jié)果;
(ⅱ)求這2個零件直徑相等的概率。本小題主要考查用列舉法計算隨機事件所含的基本事件數(shù)及事件發(fā)生的概率等基礎(chǔ)知識,考查數(shù)據(jù)處理能力及運用概率知識解決簡單的實際問題的能力。滿分12分
【解析】(Ⅰ)解:由所給數(shù)據(jù)可知,一等品零件共有6個.設(shè)“從10個零件中,隨機抽取一個為一等品”為事件A,則P(A)==.
(Ⅱ)(i)解:一等品零件的編號為.從這6個一等品零件中隨機抽取2個,所有可能的結(jié)果有:,,,
,,,共有15種.
(ii)解:“從一等品零件中,隨機抽取的2個零件直徑相等”(記為事件B)的所有可能結(jié)果有:,,共有6種.
所以P(B)=.
(本小題滿分12分)
如圖,在五面體ABCDEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.
(Ⅰ)求異面直線CE與AF所成角的余弦值;
(Ⅱ)證明CD⊥平面ABF;
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com