(1) 你認(rèn)為上述解答是否正確?若不正確.說明理由.并給出正確的解答, 對于函數(shù).試研究其最值情況. 查看更多

 

題目列表(包括答案和解析)

(2009•金山區(qū)二模)設(shè)函數(shù)f(x)=x2+x.(1)解不等式:f(x)<0;(2)請先閱讀下列材料,然后回答問題.
材料:已知函數(shù)g(x)=-
1
f(x)
,問函數(shù)g(x)是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,說明理由.一個(gè)同學(xué)給出了如下解答:
解:令u=-f(x)=-x2-x,則u=-(x+
1
2
2+
1
4

當(dāng)x=-
1
2
時(shí),u有最大值,umax=
1
4
,顯然u沒有最小值,
∴當(dāng)x=-
1
2
時(shí),g(x)有最小值4,沒有最大值.
請回答:上述解答是否正確?若不正確,請給出正確的解答;
(3)設(shè)an=
f(n)
2n-1
,請?zhí)岢龃藛栴}的一個(gè)結(jié)論,例如:求通項(xiàng)an.并給出正確解答.
注意:第(3)題中所提問題單獨(dú)給分,.解答也單獨(dú)給分.本題按照所提問題的難度分層給分,解答也相應(yīng)給分,如果同時(shí)提出兩個(gè)問題,則就高不就低,解答也相同處理.

查看答案和解析>>

學(xué)生李明解以下問題已知α,β,?均為銳角,且sinα+sin?=sinβ,cosβ+cos?=cosα求α-β的值
其解法如下:由已知sinα-sinβ=-sin?,cosα-cosβ=cos?,兩式平方相加得2-2cos(α-β)=1
cos(α-β)=
1
2
又α,β均銳角
-
π
2
<α-β<
π
2

α-β=±
π
3

請判斷上述解答是否正確?若不正確請予以指正.

查看答案和解析>>

已知x,y∈R+,且x+y=2,求
1
x
+
2
y
的最小值;給出如下解法:由x+y=2得2≥2
xy
①,即
1
xy
≥1
②,又
1
x
+
2
y
≥2
2
xy
③,由②③可得
1
x
+
2
y
≥2
2
,故所求最小值為2
2
.請判斷上述解答是否正確
不正確
不正確
,理由
①和③不等式不能同時(shí)取等號.
①和③不等式不能同時(shí)取等號.

查看答案和解析>>

精英家教網(wǎng)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
經(jīng)過點(diǎn)(p,q),離心率e=
3
2
.其中p,q分別表示標(biāo)準(zhǔn)正態(tài)分布的期望值與標(biāo)準(zhǔn)差.
(1)求橢圓C的方程;
(2)設(shè)直線x=my+1與橢圓C交于A,B兩點(diǎn),點(diǎn)A關(guān)于x軸的對稱點(diǎn)為A'.①試建立△AOB的面積關(guān)于m的函數(shù)關(guān)系;②莆田十中高三(1)班數(shù)學(xué)興趣小組通過試驗(yàn)操作初步推斷:“當(dāng)m變化時(shí),直線A'B與x軸交于一個(gè)定點(diǎn)”.你認(rèn)為此推斷是否正確?若正確,請寫出定點(diǎn)坐標(biāo),并證明你的結(jié)論;若不正確,請說明理由.

查看答案和解析>>

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點(diǎn)(0,1),離心率e=
3
2

(1)求橢圓C的方程;
(2)設(shè)直線x=my+1與橢圓C交于A、B兩點(diǎn),點(diǎn)A關(guān)于x軸的對稱點(diǎn)為A′.
①求△AOB的面積的最大值(O為坐標(biāo)原點(diǎn));
②“當(dāng)m變化時(shí),直線A′B與x軸交于一個(gè)定點(diǎn)”.你認(rèn)為此推斷是否正確?若正確,請寫出定點(diǎn)坐標(biāo),并證明你的結(jié)論;若不正確,請說明理由.

查看答案和解析>>

一. 填空題(每題4分,共48分)

1. {0};   2. 四;   3. 12;   4. 0;   5. 4;   6. 理、文7;   7. 理2a、文4;

8. 0.25;    9. 126;    10. 18;    11. ;    12. (或).

二.選擇題(每題4分,共16分)

13.D;  14.B;  15.C;  16.理B、文B.

三. 解答題.  17.(本題滿分12分)解:由已知得     (3分)

,  ∴           (6分)

,即,∴         (9分)

的面積S=.            (12分)

18.(本題滿分12分)解:∵,∴       (5分)

,欲使是純虛數(shù),

=                      (7分)
   ∴,  即                     (11分)
   ∴當(dāng)時(shí),是純虛數(shù).                      (12分)

19.(本題滿分14分,第1小題滿分9分,第2小題滿分5分)

解:(1)依題意設(shè),則,                (2分)

       (4分)    而,

,即,    (6分)    ∴       (7分)

從而.                            (9分)

(2)平面,

∴直線到平面的距離即點(diǎn)到平面的距離           (2分)

也就是的斜邊上的高,為.                (5分)

20.(本題滿分14分,第1小題滿分8分,第2小題滿分6分)

解:(1)不正確.                          (2分)
   沒有考慮到還可以小于.                  (3分)
   正確解答如下:
   令,則,
   當(dāng)時(shí),,即                  (5分)
   當(dāng)時(shí),,即                  (7分)
   ∴,即既無最大值,也無最小值.           (8分)

(2)(理)對于函數(shù),令
  ①當(dāng)時(shí),有最小值,,                   (9分)

當(dāng)時(shí),,即,當(dāng)時(shí),即

,即既無最大值,也無最小值.           (10分)
  ②當(dāng)時(shí),有最小值,, 

此時(shí),,∴,即,既無最大值,也無最小值       .(11分)
  ③當(dāng)時(shí),有最小值,,即   (12分)
,即
∴當(dāng)時(shí),有最大值,沒有最小值.             (13分)
∴當(dāng)時(shí),既無最大值,也無最小值。
 當(dāng)時(shí),有最大值,此時(shí);沒有最小值.      (14分)

(文)∵,    ∴             (12分)

∴函數(shù)的最大值為(當(dāng)時(shí))而無最小值.     (14分)

21.(本滿分16分,第1、2小題滿分各4分,第3小題滿分8分)

解:(1)                            (4分)

(2)由解得                            (7分)

所以第個(gè)月更換刀具.                                       (8分)

(3)第個(gè)月產(chǎn)生的利潤是:   (9分)

個(gè)月的總利潤:(11分)

個(gè)月的平均利潤:     (13分)

 且

在第7個(gè)月更換刀具,可使這7個(gè)月的平均利潤最大(13.21萬元) (14分)此時(shí)刀具厚度為(mm)                  (16分)

22.(本題滿分18分,第1、2小題滿分各4分,第3小題滿分10分)

解:(1)              (4分)

(2)各點(diǎn)的橫坐標(biāo)為:           (8分)

(3)過作斜率為的直線交拋物線于另一點(diǎn),            (9分)

則一般性的結(jié)論可以是:

點(diǎn) 的相鄰橫坐標(biāo)之和構(gòu)成以為首項(xiàng)和公比的等比數(shù)列(或:點(diǎn)無限趨向于某一定點(diǎn),且其橫(縱)坐標(biāo)之差成等比數(shù)列;或:無限趨向于某一定點(diǎn),且其橫(縱)坐標(biāo)之差成等比數(shù)列,等)(12分)

證明:設(shè)過點(diǎn)作斜率為的直線交拋物線于點(diǎn)

          得;       

點(diǎn)的橫坐標(biāo)為,則               (14分)

于是兩式相減得:            (16分)

=  

故點(diǎn)無限逼近于點(diǎn)      

同理無限逼近于點(diǎn)                          (18分)

 

 

 


同步練習(xí)冊答案