(理),(文)1/4, 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)(文)已知函數(shù)f(x)=x3+ax2+bx+2與直線4x-y+5=0切于點P(-1,1).
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)若x>0時,不等式f(x)≥mx2-2x+2恒成立,求實數(shù)m的取值范圍.

(理) 已知正四棱柱ABCD-A1B1C1D1底面邊長AB=2,側棱BB1的長為4,過點B作B1C的垂線交側棱CC1于點E,交線段B1C于點F.以D為原點,DA、DC、DD1所在直線分別為x、y、z軸建立空間直角坐標系D-xyz,如圖.
(Ⅰ)求證:A1C⊥平面BED;
(Ⅱ)求A1B與平面BDE所成角的正弦值的大。

查看答案和解析>>

(理)(本題8分)甲、乙、丙三人進行某項比賽,每局有兩人參加,沒有平局,在一局比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為,比賽的規(guī)則是先由甲和乙進行第一局的比賽,然后每局的獲勝者與未參加此局比賽的人進行下一局的比賽,在比賽中,有人獲勝兩局就算取得比賽的勝利,比賽結束.
(1)求只進行兩局比賽,甲就取得勝利的概率;  
(2)求只進行兩局比賽,比賽就結束的概率;
(3)求甲取得比賽勝利的概率.
20、(文)(本小題8分)甲、乙兩人做定點投籃,投籃者若投中則繼續(xù)投籃,否則由對方投籃,第一次甲投籃,已知甲、乙每次投籃命中的概率分別為、,且甲、乙投籃是否命中互不影響.
(1)求第三次由乙投籃的概率;
(2)求前4次投籃中各投兩次的概率.

查看答案和解析>>

(理)(本題8分)甲、乙、丙三人進行某項比賽,每局有兩人參加,沒有平局,在一局比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為,比賽的規(guī)則是先由甲和乙進行第一局的比賽,然后每局的獲勝者與未參加此局比賽的人進行下一局的比賽,在比賽中,有人獲勝兩局就算取得比賽的勝利,比賽結束.

   (1)求只進行兩局比賽,甲就取得勝利的概率;  

(2)求只進行兩局比賽,比賽就結束的概率;

   (3)求甲取得比賽勝利的概率.

20、(文)(本小題8分)甲、乙兩人做定點投籃,投籃者若投中則繼續(xù)投籃,否則由對方投籃,第一次甲投籃,已知甲、乙每次投籃命中的概率分別為,且甲、乙投籃是否命中互不影響.

(1)求第三次由乙投籃的概率;

(2)求前4次投籃中各投兩次的概率.

 

查看答案和解析>>

(文)已知函數(shù)f(x)=x3+ax2+bx+2與直線4x-y+5=0切于點P(-1,1).
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)若x>0時,不等式f(x)≥mx2-2x+2恒成立,求實數(shù)m的取值范圍.

(理) 已知正四棱柱ABCD-A1B1C1D1底面邊長AB=2,側棱BB1的長為4,過點B作B1C的垂線交側棱CC1于點E,交線段B1C于點F.以D為原點,DA、DC、DD1所在直線分別為x、y、z軸建立空間直角坐標系D-xyz,如圖.
(Ⅰ)求證:A1C⊥平面BED;
(Ⅱ)求A1B與平面BDE所成角的正弦值的大小.

查看答案和解析>>

(文)已知數(shù)列{an}的前n項和為Sn,且對于任意n∈N*,總有Sn=2(an-1).
(1)求數(shù)列{an}的通項公式;
(2)在an與an+1之間插入n個數(shù),使這n+2個數(shù)組成等差數(shù)列,當公差d滿足3<d<4時,求n的值并求這個等差數(shù)列所有項的和T;
(3)記an=f(n),如果(n∈N*),問是否存在正實數(shù)m,使得數(shù)列{cn}是單調(diào)遞減數(shù)列?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>


同步練習冊答案