6.已知直線與橢圓和雙曲線依次交于A.B.C.D四點.O為坐標(biāo)原點.P為平面內(nèi)任意一點.若,則等于A. 1 B. 2 C. 3 D. 4 查看更多

 

題目列表(包括答案和解析)

已知橢圓C:數(shù)學(xué)公式(a>b>0)的一個焦點到長軸的兩個端點的距離分別為2+數(shù)學(xué)公式和2-數(shù)學(xué)公式
(1)求橢圓的方程;
(2)設(shè)過定點M(0,2)的直線l與橢圓C交于不同的兩點A、B,且∠AOB為銳角(其中O為坐標(biāo)原點),求直線l的斜率k的取值范圍.
(3)如圖,過原點O任意作兩條互相垂直的直線與橢圓數(shù)學(xué)公式(a>b>0)交于P,S,R,Q四點,設(shè)原點O到四邊形PQSR一邊的距離為d,試求d=1時a,b滿足的條件.

查看答案和解析>>

已知橢圓C焦點在x軸上,其長軸長為4,離心率為,
(1)設(shè)過定點M(0,2)的直線l與橢圓C交于不同的兩點A、B,且∠AOB為銳角(其中O為坐標(biāo)原點),求直線l的斜率k的取值范圍;
(2)如圖,過原點O任意作兩條互相垂直的直線與橢圓(a>b>0)相交于P,S,R,Q四點,設(shè)原點O到四邊形PQSR一邊的距離為d,試求d=1時a,b滿足的條件.

查看答案和解析>>

已知橢圓C:(a>b>0)的一個焦點到長軸的兩個端點的距離分別為2+和2-
(1)求橢圓的方程;
(2)設(shè)過定點M(0,2)的直線l與橢圓C交于不同的兩點A、B,且∠AOB為銳角(其中O為坐標(biāo)原點),求直線l的斜率k的取值范圍.
(3)如圖,過原點O任意作兩條互相垂直的直線與橢圓(a>b>0)交于P,S,R,Q四點,設(shè)原點O到四邊形PQSR一邊的距離為d,試求d=1時a,b滿足的條件.

查看答案和解析>>

已知橢圓C:(a>b>0)的一個焦點到長軸的兩個端點的距離分別為2+和2-
(1)求橢圓的方程;
(2)設(shè)過定點M(0,2)的直線l與橢圓C交于不同的兩點A、B,且∠AOB為銳角(其中O為坐標(biāo)原點),求直線l的斜率k的取值范圍.
(3)如圖,過原點O任意作兩條互相垂直的直線與橢圓(a>b>0)交于P,S,R,Q四點,設(shè)原點O到四邊形PQSR一邊的距離為d,試求d=1時a,b滿足的條件.

查看答案和解析>>

已知F為橢圓(a>b>0)的右焦點,直線l過點F且與雙曲線的兩條漸進線l1,l2分別交于點M,N,與橢圓交于點A,B.
(Ⅰ)若,雙曲線的焦距為4.求橢圓方程.
(Ⅱ)若(O為坐標(biāo)原點),,求橢圓的離心率e.

查看答案和解析>>

一、1. A  2.B  3.B  4.C  5.A  6.D  7.A  8.C  9.B  10.A  11.D  12.D

二、13.1   14.1   15.r≥6   16.81

三、

18. (1)設(shè) A為 “甲預(yù)報站預(yù)報準(zhǔn)確”B為“乙預(yù)報站預(yù)報準(zhǔn)確”則在同一時間段里至少      

  有一個預(yù)報準(zhǔn)確的概率為-------4分

(2)①的分布列為

0

1

2

3

p

0.008

0.096

0.384

0.512

②由上的值恒為正值得

---12分

19. 解法一

(1)證明:連AC交DB于點O,

由正四棱柱性質(zhì)可知AA1⊥底面ABCD,AC⊥BD,∴A1C⊥BD,

又∵A1B1⊥側(cè)面BC1且BC1⊥BE  ∴A1C⊥BE,

又∵BD∩BE=B,∴A1C⊥平面BDE.

(2)設(shè)A1C交平面BDE于點K,連結(jié)BK,則∠A1BK為A1B與平面BDE所成的角

在側(cè)面BC1中,BE⊥B1C∴ㄓBCE∽ㄓB1BC

      又BC=2,BB1=4,∴CE=1.

連OE,則OE為平面ACC1A1與平面BDE的交線,∴OE∩A1C=K

在RtㄓECO中,,∴

     ∵

,∴在RtㄓA1BK中,,即為A1B與平面BDE所成的角的正弦值.

解法二:

(1)       以D為原點,DA、DC、DD1所在的直線分別為x,y,z軸建立空間直角坐標(biāo)系

D(0,0,0), A(2,0,0),B(2,2,0),C(0,2,0)

A1(2,0,4),B1(2,2,4),C1(0,2,4),D1(0,0,4),設(shè)點E(0,2,t)

∵BE⊥B1C,∴   ,∴E(0,2,1)

,

∴A1C⊥DB,且A1C⊥BE,∴A1C⊥平面BDE.

(2)設(shè)A1C∩平面BDE=K

,…………①

同理有

…②

由①②聯(lián)立,解得    ∴

,又易知

,即所求角的正弦值為

20.解:(1)易得

(2)設(shè)P的圖像上任一點,點P關(guān)于直線的對稱點為

∵點的圖像上,

,即得

(3)

                  下面求的最小值:

①當(dāng),即

,得,所以

②當(dāng)在R上是增函數(shù),無最小值,與不符.

③當(dāng)時,在R上是減函數(shù),無最小值,與不符.

④當(dāng)時,,與最小值不符.

綜上所述,所求的取值范圍是

21.(1)解:設(shè)P(a,0),Q(0,b)則:  ∴

設(shè)M(x,y)∵   ∴         ∴
(2)解法一:設(shè)A(a,b),,x1x2

則直線SR的方程為:,即4y = (x1+x2)xx1x2

∵A點在SR上,∴4b=(x1+x2)ax1x2  ①  對求導(dǎo)得:y′=x

∴拋物線上S.R處的切線方程為

即4    ②

即4  ③

聯(lián)立②、③得  

代入①得:ax-2y-2b=0故:B點在直線ax-2y-2b=0上.

解法二:設(shè)A(a,b),當(dāng)過點A的直線斜率不存在時l與拋物線有且僅有一個公共點,與題意不符,可設(shè)直線SR的方程為yb=k(xa).

聯(lián)立消去y,得x2-4kx+4ak-4b=0.設(shè),x1x2

則由韋達定理,得

又過S、R點的切線方程分別為,. 

聯(lián)立,并解之,得k為參數(shù))   消去k,得ax-2y-2b=0.

故B點在直線2axyb=0上.

22.解:(1)=22;

(3)由(2)知

=

 


同步練習(xí)冊答案