12 (文)的值是 查看更多

 

題目列表(包括答案和解析)

(文)已知函數(shù)f(x)=(sin
3
ωx+cosωx)cosωx-
1
2
(ω>0)的最小正周期為4π.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C的對(duì)邊長(zhǎng)分別是a,b,c滿足(2a-c)cosB=bcosC,求函數(shù)f(A)的取值范圍.

查看答案和解析>>

(文)設(shè)數(shù)列{an}的通項(xiàng)公式為a n=pn+q(n∈N*,p>0).?dāng)?shù)列{bn}定義如下:對(duì)于正整數(shù)m,bm是使得不等式an≥m成立的所有n中的最小值.
(Ⅰ)若p=
1
2
,q=-
1
3
,求b3;
(Ⅱ)(文)若p=2,q=-1,求數(shù)列{bm}的前2m項(xiàng)和公式;
(Ⅲ)(文)若p=
1
3
,是否存在q,使得b m=3m+2(m∈N*)?如果存在,求q的取值范圍;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

(文)已知函數(shù)f(x)=
2
3
x3-ax2-3x,x∈R

(1)若函數(shù)在x=1時(shí)取得極小值,求實(shí)數(shù)a的值;
(2)當(dāng)|a|<
1
2
時(shí),求證:f(x)在(-1,1)內(nèi)是減函數(shù).

查看答案和解析>>

(文)已知A={x|
1
2
≤x≤2}
,f(x)=x2+px+q和g(x)=x+
1
x
+1
是定義在A上的函數(shù),當(dāng)x、x0∈A時(shí),有f(x)≥f(x0),g(x)≥g(x0),且f(x0)=g(x0),則f(x)在A上的最大值是
4
4

查看答案和解析>>

(文)設(shè)x,y滿足約束條件:
0≤x≤1
0≤y≤1
y-x≥
1
2
,則z=4-2x+y的最大值是( 。

查看答案和解析>>

一、選擇題:(本大題共10小題,每小題5分,共50分)

  1 B  2 A  3  文C(理C) 4  D  5  文A(理B) 6  文B(理C)   7  文C(理C)   8  文C(理A)   9  文A (理D) 10  文D(理A)

二、填空題:(本大題共6小題,每小題4分,共24分 )

11  (文)“若,則” ,(理)

12  (文) ,(理), 

13  (文),(理)-2

14  -2      15            16  ②④

三、解答題:(本大題共6個(gè)解答題,滿分76分,)

17  (文)解:以AN所在直線為x軸,AN的中垂

線為y軸建立平面直角坐標(biāo)系如圖所示,

則A(-4,0),N(4,0),設(shè)P(x,y)  

由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:

                             

代入坐標(biāo)得:        

整理得:                        

                            

所以動(dòng)點(diǎn)P的軌跡是以點(diǎn)

(理)解:(I)當(dāng)a=1時(shí)  

                            

 或         

                               

(II)原不等式              

設(shè) 

當(dāng)且僅當(dāng)

時(shí)                    

依題有:10a<10  ∴為所求  

 18  (文)解:

  

   解得        

                   

                            

 

若由方程組解得,可參考給分

(理)解:(Ⅰ)設(shè)    (a≠0),則

           ……     ①

          ……    ②

又∵有兩等根

      ∴……  ③

由①②③得                         

又∵

  ∴a<0, 故

                        

    (Ⅱ)

                        

       ∵g(x)無(wú)極值

       ∴方程

      

      得                      

19  (文)解:(I)當(dāng)a=1時(shí)  

                            

 或         

                              

(II)原不等式              

設(shè) 

當(dāng)且僅當(dāng)

時(shí)                   

依題有:10a<10  ∴為所求                       

 

(理)解:以AN所在直線為x軸,AN的中垂

線為y軸建立平面直角坐標(biāo)系如圖所示,

則A(-4,0),N(4,0),設(shè)P(x,y)  

由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:

                              

代入坐標(biāo)得:        

整理得:                       

                            

所以動(dòng)點(diǎn)P的軌跡是以點(diǎn)

20  (文)解:(Ⅰ)設(shè)    (a≠0),則

           ……     ①

          ……    ②

又∵有兩等根

      ∴……  ③

由①②③得                         

又∵

  ∴a<0, 故

                       

    (Ⅱ)

                        

       ∵g(x)無(wú)極值

       ∴方程

      

      得                             

(理)解:(I)設(shè)       (1)

     (2)

由(1),(2)解得              

(II)由向量與向量的夾角為

及A+B+C=知A+C=

            

     

由0<A<,得

的取值范圍是                      

 

21   解:(I)由已知得Sn=2an-3n,

Sn+1=2an+1-3(n+1),兩式相減并整理得:an+1=2an+3            

所以3+ an+1=2(3+an),又a1=S1=2a1-3,a1=3可知3+ a1=6,進(jìn)而可知an+3

所以,故數(shù)列{3+an}是首相為6,公比為2的等比數(shù)列,

所以3+an=6,即an=3()                           

同步練習(xí)冊(cè)答案