①曲線按平移可得曲線, 查看更多

 

題目列表(包括答案和解析)

給出以下5個命題:
①曲線x2-(y-1)2=1按
a
=(1,-2)
平移可得曲線(x+1)2-(y-3)2=1;
②設(shè)A、B為兩個定點,n為常數(shù),|
PA
|-|
PB
|=n
,則動點P的軌跡為雙曲線;
③若橢圓的左、右焦點分別為F1、F2,P是該橢圓上的任意一點,延長F1P到點M,使|F2P|=|PM|,則點M的軌跡是圓;
④A、B是平面內(nèi)兩定點,平面內(nèi)一動點P滿足向量
AB
AP
夾角為銳角θ,且滿足 |
PB
| |
AB
| +
PA
AB
=0
,則點P的軌跡是圓(除去與直線AB的交點);
⑤已知正四面體A-BCD,動點P在△ABC內(nèi),且點P到平面BCD的距離與點P到點A的距離相等,則動點P的軌跡為橢圓的一部分.
其中所有真命題的序號為
 

查看答案和解析>>

給出以下4個命題:

①曲線平移可得曲線;

②若|-1|+|-1|,則使取得最小值的最優(yōu)解有無數(shù)多個;

③設(shè)、為兩個定點,為常數(shù),,則動點的軌跡為雙曲線;

④若橢圓的左、右焦點分別為、是該橢圓上的任意一點,延長到點,使,則點的軌跡是圓.

其中所有真命題的序號為                 .

 

查看答案和解析>>

給出以下5個命題:
①曲線x2-(y-1)2=1按平移可得曲線(x+1)2-(y-3)2=1;
②設(shè)A、B為兩個定點,n為常數(shù),,則動點P的軌跡為雙曲線;
③若橢圓的左、右焦點分別為F1、F2,P是該橢圓上的任意一點,延長F1P到點M,使|F2P|=|PM|,則點M的軌跡是圓;
④A、B是平面內(nèi)兩定點,平面內(nèi)一動點P滿足向量夾角為銳角θ,且滿足 ,則點P的軌跡是圓(除去與直線AB的交點);
⑤已知正四面體A-BCD,動點P在△ABC內(nèi),且點P到平面BCD的距離與點P到點A的距離相等,則動點P的軌跡為橢圓的一部分.
其中所有真命題的序號為   

查看答案和解析>>

給出以下4個命題:
①曲線x2-(y-1)2=1按=(1,-2)平移可得曲線(x+1)2-(y-3)2=1;
②若|x-1|+|y-1|≤1,則使x-y取得最小值的最優(yōu)解有無數(shù)多個;
③設(shè)A、B為兩個定點,n為常數(shù),||-||=n,則動點P的軌跡為雙曲線;
④若橢圓的左、右焦點分別為F1、F2,P是該橢圓上的任意一點,延長F1P到點M,使|F2P|=|PM|,則點M的軌跡是圓.
其中所有真命題的序號為   

查看答案和解析>>

給出以下4個命題:
①曲線平移可得曲線;
②若|-1|+|-1|,則使取得最小值的最優(yōu)解有無數(shù)多個;
③設(shè)、為兩個定點,常數(shù),,則動點的軌跡為雙曲線;
④若橢圓的左、右焦點分別為、,是該橢圓上的任意一點,延長到點,使,則點的軌跡是圓.
其中所有真命題的序號為                .

查看答案和解析>>

一、選擇題:(本大題共10小題,每小題5分,共50分)

  1 B  2 A  3  文C(理C) 4  D  5  文A(理B) 6  文B(理C)   7  文C(理C)   8  文C(理A)   9  文A (理D) 10  文D(理A)

二、填空題:(本大題共6小題,每小題4分,共24分。

11  (文)“若,則” ,(理)

12  (文) ,(理), 

13  (文),(理)-2

14  -2      15            16  ②④

三、解答題:(本大題共6個解答題,滿分76分,)

17  (文)解:以AN所在直線為x軸,AN的中垂

線為y軸建立平面直角坐標(biāo)系如圖所示,

則A(-4,0),N(4,0),設(shè)P(x,y)  

由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:

                             

代入坐標(biāo)得:        

整理得:                        

                            

所以動點P的軌跡是以點

(理)解:(I)當(dāng)a=1時  

                            

 或         

                               

(II)原不等式              

設(shè) 

當(dāng)且僅當(dāng)

                    

依題有:10a<10  ∴為所求  

 18  (文)解:

  

   解得        

                   

                            

 

若由方程組解得,可參考給分

(理)解:(Ⅰ)設(shè)    (a≠0),則

           ……     ①

          ……    ②

又∵有兩等根

      ∴……  ③

由①②③得                         

又∵

  ∴a<0, 故

                        

    (Ⅱ)

                        

       ∵g(x)無極值

       ∴方程

      

      得                      

19  (文)解:(I)當(dāng)a=1時  

                            

 或         

                              

(II)原不等式              

設(shè) 

當(dāng)且僅當(dāng)

                   

依題有:10a<10  ∴為所求                       

 

(理)解:以AN所在直線為x軸,AN的中垂

線為y軸建立平面直角坐標(biāo)系如圖所示,

則A(-4,0),N(4,0),設(shè)P(x,y)  

由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:

                              

代入坐標(biāo)得:        

整理得:                       

                            

所以動點P的軌跡是以點

20  (文)解:(Ⅰ)設(shè)    (a≠0),則

           ……     ①

          ……    ②

又∵有兩等根

      ∴……  ③

由①②③得                         

又∵

  ∴a<0, 故

                       

    (Ⅱ)

                        

       ∵g(x)無極值

       ∴方程

      

      得                             

(理)解:(I)設(shè)       (1)

     (2)

由(1),(2)解得              

(II)由向量與向量的夾角為

及A+B+C=知A+C=

            

     

由0<A<,得

的取值范圍是                      

 

21   解:(I)由已知得Sn=2an-3n,

Sn+1=2an+1-3(n+1),兩式相減并整理得:an+1=2an+3            

所以3+ an+1=2(3+an),又a1=S1=2a1-3,a1=3可知3+ a1=6,進(jìn)而可知an+3

所以,故數(shù)列{3+an}是首相為6,公比為2的等比數(shù)列,

所以3+an=6,即an=3()                           

同步練習(xí)冊答案