17 (文)如圖.已知圓A的半徑是2.圓外一定點(diǎn)N與圓A上的點(diǎn)的最短距離為6. 查看更多

 

題目列表(包括答案和解析)

本題滿分12分)
在直角坐標(biāo)平面內(nèi),已知點(diǎn),動(dòng)點(diǎn)滿足 .
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過點(diǎn)作直線與軌跡交于兩點(diǎn),線段的中點(diǎn)為,軌跡的右端點(diǎn)為點(diǎn)N,求直線MN的斜率的取值范圍.

查看答案和解析>>

(本題滿分12分)

如下的三個(gè)圖中,上面的是一個(gè)長方體截去一個(gè)角所得多面體的直觀圖,它的正視圖和側(cè)視圖在下面畫出(單位:

(Ⅰ)在正視圖下面,按照畫三視圖的要求畫出該多面體的俯視圖;

(Ⅱ)按照給出的尺寸,求該多面體的體積;

(Ⅲ)在所給直觀圖中連結(jié),證明:∥面

 

查看答案和解析>>

.(本題滿分12分) 本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分6分.

(理)如圖,已知矩形的邊與正方形所在平面垂直,,是線段的中點(diǎn)。

(1)求證:平面;

(2)求二面角的大小。

 

 

 

查看答案和解析>>

(本題滿分12分)
設(shè)函數(shù)的圖象關(guān)于y軸對(duì)稱,函數(shù)(b為實(shí)數(shù),c為正整數(shù))有兩個(gè)不同的極值點(diǎn)A、B,且A、B與坐標(biāo)原點(diǎn)O共線:
(1)     求f(x)的表達(dá)式;
(2)     試求b的值;
(3)     若時(shí),函數(shù)g(x)的圖象恒在函數(shù)f(x)圖象的下方,求正整數(shù)c的值。

查看答案和解析>>

本題滿分12分)

在直角坐標(biāo)平面內(nèi),已知點(diǎn),動(dòng)點(diǎn)滿足 .

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)過點(diǎn)作直線與軌跡交于兩點(diǎn),線段的中點(diǎn)為,軌跡的右端點(diǎn)為點(diǎn)N,求直線MN的斜率的取值范圍.

 

查看答案和解析>>

一、選擇題:(本大題共10小題,每小題5分,共50分)

  1 B  2 A  3  文C(理C) 4  D  5  文A(理B) 6  文B(理C)   7  文C(理C)   8  文C(理A)   9  文A (理D) 10  文D(理A)

二、填空題:(本大題共6小題,每小題4分,共24分 )

11  (文)“若,則” ,(理)

12  (文) ,(理), 

13  (文),(理)-2

14  -2      15            16  ②④

三、解答題:(本大題共6個(gè)解答題,滿分76分,)

17  (文)解:以AN所在直線為x軸,AN的中垂

線為y軸建立平面直角坐標(biāo)系如圖所示,

則A(-4,0),N(4,0),設(shè)P(x,y)  

由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:

                             

代入坐標(biāo)得:        

整理得:                        

                            

所以動(dòng)點(diǎn)P的軌跡是以點(diǎn)

(理)解:(I)當(dāng)a=1時(shí)  

                            

 或         

                               

(II)原不等式              

設(shè) 

當(dāng)且僅當(dāng)

時(shí)                    

依題有:10a<10  ∴為所求  

 18  (文)解:

  

   解得        

                   

                            

 

若由方程組解得,可參考給分

(理)解:(Ⅰ)設(shè)    (a≠0),則

           ……     ①

          ……    ②

又∵有兩等根

      ∴……  ③

由①②③得                         

又∵

  ∴a<0, 故

                        

    (Ⅱ)

                        

       ∵g(x)無極值

       ∴方程

      

      得                      

19  (文)解:(I)當(dāng)a=1時(shí)  

                            

 或         

                              

(II)原不等式              

設(shè) 

當(dāng)且僅當(dāng)

時(shí)                   

依題有:10a<10  ∴為所求                       

 

(理)解:以AN所在直線為x軸,AN的中垂

線為y軸建立平面直角坐標(biāo)系如圖所示,

則A(-4,0),N(4,0),設(shè)P(x,y)  

由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:

                              

代入坐標(biāo)得:        

整理得:                       

                            

所以動(dòng)點(diǎn)P的軌跡是以點(diǎn)

20  (文)解:(Ⅰ)設(shè)    (a≠0),則

           ……     ①

          ……    ②

又∵有兩等根

      ∴……  ③

由①②③得                         

又∵

  ∴a<0, 故

                       

    (Ⅱ)

                        

       ∵g(x)無極值

       ∴方程

      

      得                             

(理)解:(I)設(shè)       (1)

     (2)

由(1),(2)解得              

(II)由向量與向量的夾角為

及A+B+C=知A+C=

            

     

由0<A<,得

的取值范圍是                      

 

21   解:(I)由已知得Sn=2an-3n,

Sn+1=2an+1-3(n+1),兩式相減并整理得:an+1=2an+3            

所以3+ an+1=2(3+an),又a1=S1=2a1-3,a1=3可知3+ a1=6,進(jìn)而可知an+3

所以,故數(shù)列{3+an}是首相為6,公比為2的等比數(shù)列,

所以3+an=6,即an=3()                           

同步練習(xí)冊(cè)答案