題目列表(包括答案和解析)
( 本題滿分12分) 設(shè),,
(1)當(dāng)時(shí),若
求。
(2)當(dāng)時(shí),若展開式中的系數(shù)是20,求的值。
(3)展開式中的系數(shù)是19,當(dāng),變化時(shí),求系數(shù)的最小值。
(本題滿分12分)
某學(xué)校的課題組為了研究學(xué)生的數(shù)學(xué)成績(jī)與物理成績(jī)之間的關(guān)系,隨機(jī)抽取高二年級(jí)20名學(xué)生某次考試成績(jī)(滿分100分)如下表所示:
序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
數(shù)學(xué) | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 83 | 72 | 83 |
物理 | 90 | 63 | 72 | 87 | 91 | 71 | 58 | 82 | 93 | 81 | 77 | 82 | 48 | 85 | 69 | 91 | 61 | 84 | 78 | 86 |
若單科成績(jī)?cè)?5分以上(含85分),則該科成績(jī)?yōu)閮?yōu)秀.
(1)根據(jù)上表完成下面的列聯(lián)表(單位:人)
數(shù)學(xué)成績(jī)優(yōu)秀 | 數(shù)學(xué)成績(jī)不優(yōu)秀 | 總計(jì) | |
物理成績(jī)優(yōu)秀 | |||
物理成績(jī)不優(yōu)秀 | |||
總計(jì) | 20 |
(2)根據(jù)(1)中表格的數(shù)據(jù)計(jì)算,是否有99%的把握,認(rèn)為學(xué)生的數(shù)學(xué)成績(jī)與物理成績(jī)之間有關(guān)系?
(3)若從這20個(gè)人中抽出1人來(lái)了解有關(guān)情況,求抽到的學(xué)生數(shù)學(xué)成績(jī)與物理成績(jī)至少有一門不優(yōu)秀的概率.
參考公式:
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
(本題滿分12分)
對(duì)甲、乙兩種商品的重量的誤差進(jìn)行抽查,測(cè)得數(shù)據(jù)如下(單位:):
甲:13 15 14 14 9 14 21 9 10 11
乙:10 14 9 12 15 14 11 19 22 16
(1)畫出樣本數(shù)據(jù)的莖葉圖,并指出甲,乙兩種商品重量誤差的中位數(shù);
(2)計(jì)算甲種商品重量誤差的樣本方差;
(3)現(xiàn)從重量誤差不低于15的乙種商品中隨機(jī)抽取兩件,求重量誤差為19的商品被抽
中的概率。
(本題滿分12分)
為了解某年段1000名學(xué)生的百米成績(jī)情況,隨機(jī)抽取了若干學(xué)生的百米成績(jī),成績(jī)?nèi)拷橛?3秒與18秒之間,將成績(jī)按如下方式分成五組:第一組[13,14);第二組[14,15);……;第五組[17,18].按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右的前3個(gè)組的頻率之比為3∶8∶19,且第二組的頻數(shù)為8.
(1)將頻率當(dāng)作概率,請(qǐng)估計(jì)該年段學(xué)生中百米成績(jī)?cè)赱16,17)內(nèi)的人數(shù);
(2)求調(diào)查中隨機(jī)抽取了多少個(gè)學(xué)生的百米成績(jī);
(3)若從第一、五組中隨機(jī)取出兩個(gè)成績(jī),求這兩個(gè)成績(jī)的差的絕對(duì)值大于1秒的概率.
(本題滿分12分)某工廠有甲、乙兩個(gè)生產(chǎn)小組,每個(gè)小組各有四名工人,某天該廠每位工人的生產(chǎn)情況如下表.
|
員工號(hào) |
1 |
2 |
3 |
4 |
甲組
|
件數(shù) |
9 |
11 |
1l
|
9
|
|
員工號(hào) |
1 |
2 |
3 |
4 |
乙組
|
件數(shù) |
b 9 |
8 |
10 |
9 |
(1)用莖葉圖表示兩組的生產(chǎn)情況;
(2)求乙組員工生產(chǎn)件數(shù)的平均數(shù)和方差;
(3)分別從甲、乙兩組中隨機(jī)選取一名員工的生產(chǎn)件數(shù),求這兩名員工的生產(chǎn)總件數(shù)為19的概率.
(注:方差,其中為x1,x2,…,xn的平均數(shù))
一、選擇題:(本大題共10小題,每小題5分,共50分)
1 B
三、解答題:(本大題共6個(gè)解答題,滿分76分,)
線為y軸建立平面直角坐標(biāo)系如圖所示,
則A(-4,0),N(4,0),設(shè)P(x,y)
由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:
代入坐標(biāo)得:
整理得:
即
所以動(dòng)點(diǎn)P的軌跡是以點(diǎn)
(理)解:(I)當(dāng)a=1時(shí)
或或
或
(II)原不等式
設(shè)有
當(dāng)且僅當(dāng)
即時(shí)
解得
若由方程組解得,可參考給分
(理)解:(Ⅰ)設(shè) (a≠0),則
…… ①
…… ②
又∵有兩等根
∴…… ③
由①②③得
又∵
∴a<0, 故
∴
(Ⅱ)
∵g(x)無(wú)極值
∴方程
得
或或
或
(II)原不等式
設(shè)有
當(dāng)且僅當(dāng)
即時(shí)
(理)解:以AN所在直線為x軸,AN的中垂
線為y軸建立平面直角坐標(biāo)系如圖所示,
則A(-4,0),N(4,0),設(shè)P(x,y)
由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:
代入坐標(biāo)得:
整理得:
即
所以動(dòng)點(diǎn)P的軌跡是以點(diǎn)
…… ①
…… ②
又∵有兩等根
∴…… ③
由①②③得
又∵
∴a<0, 故
∴
(Ⅱ)
∵g(x)無(wú)極值
∴方程
得
(理)解:(I)設(shè) (1)
又故 (2)
由(1),(2)解得
(II)由向量與向量的夾角為得
由及A+B+C=知A+C=
則
由0<A<得,得
故的取值范圍是
Sn+1=2an+1-3(n+1),兩式相減并整理得:an+1=2an+3
所以3+ an+1=2(3+an),又a1=S1=2a1-3,a1=3可知3+ a1=6,進(jìn)而可知an+3
所以,故數(shù)列{3+an}是首相為6,公比為2的等比數(shù)列,
所以3+an=6,即an=3()
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com