(I)若方程 有兩個(gè)相等的實(shí)數(shù)根.求的解析式, 查看更多

 

題目列表(包括答案和解析)

已知函數(shù),是函數(shù)y=f(x)的極值點(diǎn).
(I)求實(shí)數(shù)a的值;
(II)若方程f(x)-m=0有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

已知f(x)為二次函數(shù)且二次項(xiàng)系數(shù)大于
1
2
,不等式f(x)<2x的解集為(-1,2),且方程f(x)+
9
4
=0有兩個(gè)相等的實(shí)根,若α,β是方程f(x)=0的兩個(gè)根(α>β),f'(x)是f(x)的導(dǎo)數(shù),設(shè)a1=3,an+1=an-
f(an)
f′(an)
(n∈N*)

(I)求函數(shù)f(x)的解析式;
(II)記bn=lg
an
an
(n∈N*),求數(shù)列{bn}
的前n項(xiàng)和.

查看答案和解析>>

(本題滿分14分)已知函數(shù)是常數(shù))

(I) 求函數(shù)的單調(diào)區(qū)間;

(II) 當(dāng)處取得極值時(shí),若關(guān)于x的方程上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;

(III) 求證:當(dāng)時(shí)

 

查看答案和解析>>

(本題滿分14分)已知函數(shù)是常數(shù))

(I) 求函數(shù)的單調(diào)區(qū)間;

(II) 當(dāng)處取得極值時(shí),若關(guān)于x的方程上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;

(III) 求證:當(dāng)時(shí)

 

查看答案和解析>>

已知函數(shù)f(x)=
(x2-2ax)exx>0
bxx≤0
,x=
2
是函數(shù)y=f(x)的極值點(diǎn).
(I)求實(shí)數(shù)a的值;
(II)若方程f(x)-m=0有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

一、選擇題:(本大題共10小題,每小題5分,共50分)

  1 B  2 A  3  文C(理C) 4  D  5  文A(理B) 6  文B(理C)   7  文C(理C)   8  文C(理A)   9  文A (理D) 10  文D(理A)

二、填空題:(本大題共6小題,每小題4分,共24分 )

11  (文)“若,則” ,(理)

12  (文) ,(理), 

13  (文),(理)-2

14  -2      15            16  ②④

三、解答題:(本大題共6個(gè)解答題,滿分76分,)

17  (文)解:以AN所在直線為x軸,AN的中垂

線為y軸建立平面直角坐標(biāo)系如圖所示,

則A(-4,0),N(4,0),設(shè)P(x,y)  

由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:

                             

代入坐標(biāo)得:        

整理得:                        

                            

所以動(dòng)點(diǎn)P的軌跡是以點(diǎn)

(理)解:(I)當(dāng)a=1時(shí)  

                            

 或         

                               

(II)原不等式              

設(shè) 

當(dāng)且僅當(dāng)

時(shí)                    

依題有:10a<10  ∴為所求  

 18  (文)解:

  

   解得        

                   

                            

 

若由方程組解得,可參考給分

(理)解:(Ⅰ)設(shè)    (a≠0),則

           ……     ①

          ……    ②

又∵有兩等根

      ∴……  ③

由①②③得                         

又∵

  ∴a<0, 故

                        

    (Ⅱ)

                        

       ∵g(x)無(wú)極值

       ∴方程

      

      得                      

19  (文)解:(I)當(dāng)a=1時(shí)  

                            

 或         

                              

(II)原不等式              

設(shè) 

當(dāng)且僅當(dāng)

時(shí)                   

依題有:10a<10  ∴為所求                       

 

(理)解:以AN所在直線為x軸,AN的中垂

線為y軸建立平面直角坐標(biāo)系如圖所示,

則A(-4,0),N(4,0),設(shè)P(x,y)  

由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:

                              

代入坐標(biāo)得:        

整理得:                       

                            

所以動(dòng)點(diǎn)P的軌跡是以點(diǎn)

20  (文)解:(Ⅰ)設(shè)    (a≠0),則

           ……     ①

          ……    ②

又∵有兩等根

      ∴……  ③

由①②③得                         

又∵

  ∴a<0, 故

                       

    (Ⅱ)

                        

       ∵g(x)無(wú)極值

       ∴方程

      

      得                             

(理)解:(I)設(shè)       (1)

     (2)

由(1),(2)解得              

(II)由向量與向量的夾角為

及A+B+C=知A+C=

            

     

由0<A<,得

的取值范圍是                      

 

21   解:(I)由已知得Sn=2an-3n,

Sn+1=2an+1-3(n+1),兩式相減并整理得:an+1=2an+3            

所以3+ an+1=2(3+an),又a1=S1=2a1-3,a1=3可知3+ a1=6,進(jìn)而可知an+3

所以,故數(shù)列{3+an}是首相為6,公比為2的等比數(shù)列,

所以3+an=6,即an=3()                           

同步練習(xí)冊(cè)答案