由 , 得.所以點(diǎn)B到平面OCD的距離為點(diǎn)評(píng):線面平行的證明.異面直線所成的角.點(diǎn)到直線的距離.既可以用綜合方法求解.也可以用向量方法求解.后者較簡(jiǎn)便.但新課標(biāo)地區(qū)文科沒(méi)學(xué)空間向量.例題9證明:由三視圖可得直觀圖為直三棱柱且底面ADF中AD⊥DF,DF=AD=DC (1)連接DB.可知B.N.D共線.且AC⊥DN 又FD⊥AD FD⊥CD. 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為

   點(diǎn)是曲線上的動(dòng)點(diǎn).

  (1)求線段的中點(diǎn)的軌跡的直角坐標(biāo)方程;

  (2) 以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,若直線的極坐標(biāo)方程為,求點(diǎn)到直線距離的最大值.

【解析】第一問(wèn)利用設(shè)曲線上動(dòng)點(diǎn),由中點(diǎn)坐標(biāo)公式可得

所以點(diǎn)的軌跡的參數(shù)方程為

消參可得

第二問(wèn),由題可知直線的直角坐標(biāo)方程為,因?yàn)樵c(diǎn)到直線的距離為,

所以點(diǎn)到直線的最大距離為

 

查看答案和解析>>

【解析】B.由題得所以選B.

查看答案和解析>>

已知,是橢圓左右焦點(diǎn),它的離心率,且被直線所截得的線段的中點(diǎn)的橫坐標(biāo)為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)是其橢圓上的任意一點(diǎn),當(dāng)為鈍角時(shí),求的取值范圍。

【解析】解:因?yàn)榈谝粏?wèn)中,利用橢圓的性質(zhì)由   所以橢圓方程可設(shè)為:,然后利用

    

      橢圓方程為

第二問(wèn)中,當(dāng)為鈍角時(shí),,    得

所以    得

解:(Ⅰ)由   所以橢圓方程可設(shè)為:

                                       3分

    

      橢圓方程為             3分

(Ⅱ)當(dāng)為鈍角時(shí),,    得   3分

所以    得

 

查看答案和解析>>

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長(zhǎng).

 

【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得于是,所以

(2) ,設(shè)平面PCD的法向量,

,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點(diǎn)H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過(guò)點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

在復(fù)平面內(nèi), 是原點(diǎn),向量對(duì)應(yīng)的復(fù)數(shù)是,=2+i。

(Ⅰ)如果點(diǎn)A關(guān)于實(shí)軸的對(duì)稱點(diǎn)為點(diǎn)B,求向量對(duì)應(yīng)的復(fù)數(shù)

(Ⅱ)復(fù)數(shù),對(duì)應(yīng)的點(diǎn)C,D。試判斷A、B、C、D四點(diǎn)是否在同一個(gè)圓上?并證明你的結(jié)論。

【解析】第一問(wèn)中利用復(fù)數(shù)的概念可知得到由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i  ∵ (2+i)(-2i)=2-4i,      ∴  =

第二問(wèn)中,由題意得,=(2,1)  ∴

同理,所以A、B、C、D四點(diǎn)到原點(diǎn)O的距離相等,

∴A、B、C、D四點(diǎn)在以O(shè)為圓心,為半徑的圓上

(Ⅰ)由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i     3分

     ∵ (2+i)(-2i)=2-4i,      ∴  =                 2分

(Ⅱ)A、B、C、D四點(diǎn)在同一個(gè)圓上。                              2分

證明:由題意得,=(2,1)  ∴

  同理,所以A、B、C、D四點(diǎn)到原點(diǎn)O的距離相等,

∴A、B、C、D四點(diǎn)在以O(shè)為圓心,為半徑的圓上

 

查看答案和解析>>


同步練習(xí)冊(cè)答案