又 平面點(diǎn)評:證明線面垂直.關(guān)鍵是在平面內(nèi)找到兩條相交直線與已知直線垂直.由線線垂直推出線面垂直.證明線線垂直有時要用勾股定理的逆定理.例題11 查看更多

 

題目列表(包括答案和解析)

如圖,三棱錐中,側(cè)面底面, ,且,.(Ⅰ)求證:平面;

(Ⅱ)若為側(cè)棱PB的中點(diǎn),求直線AE與底面所成角的正弦值.

【解析】第一問中,利用由知, ,

又AP=PC=2,所以AC=2,

又AB=4, BC=2,,所以,所以,即,

又平面平面ABC,平面平面ABC=AC, 平面ABC,

平面ACP,所以第二問中結(jié)合取AC中點(diǎn)O,連接PO、OB,并取OB中點(diǎn)H,連接AH、EH,因?yàn)镻A=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,又EH//PO,所以EH平面ABC ,

為直線AE與底面ABC 所成角,

 (Ⅰ) 證明:由用由知, ,

又AP=PC=2,所以AC=2,

又AB=4, BC=2,,所以,所以,即,

又平面平面ABC,平面平面ABC=AC, 平面ABC,

平面ACP,所以

………………………………………………6分

(Ⅱ)如圖, 取AC中點(diǎn)O,連接PO、OB,并取OB中點(diǎn)H,連接AH、EH,

因?yàn)镻A=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,

又EH//PO,所以EH平面ABC ,

為直線AE與底面ABC 所成角,

………………………………………10分

又PO=1/2AC=,也所以有EH=1/2PO=,

由(Ⅰ)已證平面PBC,所以,即,

,

于是

所以直線AE與底面ABC 所成角的正弦值為

 

查看答案和解析>>

如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA底面ABCD,AC=,PA=2,E是PC上的一點(diǎn),PE=2EC。

(I)     證明PC平面BED;

(II)   設(shè)二面角A-PB-C為90°,求PD與平面PBC所成角的大小

【解析】本試題主要是考查了四棱錐中關(guān)于線面垂直的證明以及線面角的求解的運(yùn)用。

從題中的線面垂直以及邊長和特殊的菱形入手得到相應(yīng)的垂直關(guān)系和長度,并加以證明和求解。

解法一:因?yàn)榈酌鍭BCD為菱形,所以BDAC,又

【點(diǎn)評】試題從命題的角度來看,整體上題目與我們平時練習(xí)的試題和相似,底面也是特殊的菱形,一個側(cè)面垂直于底面的四棱錐問題,那么創(chuàng)新的地方就是點(diǎn)E的位置的選擇是一般的三等分點(diǎn),這樣的解決對于學(xué)生來說就是比較有點(diǎn)難度的,因此最好使用空間直角坐標(biāo)系解決該問題為好。

 

查看答案和解析>>

(本小題滿分12分)如圖,在矩形中,,又⊥平面,
(Ⅰ)若在邊上存在一點(diǎn),使,
的取值范圍;
(Ⅱ)當(dāng)邊上存在唯一點(diǎn),使時,
求二面角的余弦值.

查看答案和解析>>

(本小題滿分12分)如圖,在矩形中,,又⊥平面

(Ⅰ)若在邊上存在一點(diǎn),使,

的取值范圍;

(Ⅱ)當(dāng)邊上存在唯一點(diǎn),使時,

求二面角的余弦值.

 

 

查看答案和解析>>

如圖,在底面是正方形的四棱錐P—ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.

(I)求證:PD⊥BC;

(II)求二面角B—PD—C的正切值。

【解析】第一問利用∵平面PCD⊥平面ABCD,又∵平面PCD∩平面ABCD=CD,

BC在平面ABCD內(nèi) ,BC⊥CD,∴BC⊥平面PCD.

∴PD⊥BC.

第二問中解:取PD的中點(diǎn)E,連接CE、BE,

為正三角形,

由(I)知BC⊥平面PCD,∴CE是BE在平面PCD內(nèi)的射影,

∴BE⊥PD.∴∠CEB為二面角B—PD—C的平面角,進(jìn)而求解。

 

查看答案和解析>>


同步練習(xí)冊答案