(Ⅰ)求cosC.的值, 查看更多

 

題目列表(包括答案和解析)

設(shè)△ABC的內(nèi)角A、B、C所對的邊分別為a,b,c,
(1)若a=1,b=2,cosC=
1
4
,求△ABC的周長;
(2)若直線l:
x
a
+
y
b
=1
恒過點D(1,4),求u=a+b的最小值.

查看答案和解析>>

在△ABC中,a,b,c分別為角A,B,C所對的邊,向量數(shù)學(xué)公式=(2a+c,b),數(shù)學(xué)公式=(cosB,cosC),且數(shù)學(xué)公式,數(shù)學(xué)公式垂直.
( I)確定角B的大;
( II)若∠ABC的平分線BD交AC于點D,且BD=1,設(shè)BC=x,BA=y,試確定y關(guān)于x的函數(shù)式,并求邊AC長的取值范圍.

查看答案和解析>>

在△ABC中,a,b,c分別為角A,B,C所對的邊,向量
m
=(2a+c,b),
n
=(cosB,cosC),且
m
,
n
垂直.
( I)確定角B的大;
( II)若∠ABC的平分線BD交AC于點D,且BD=1,設(shè)BC=x,BA=y,試確定y關(guān)于x的函數(shù)式,并求邊AC長的取值范圍.

查看答案和解析>>

在△ABC中,a,b,c分別為角A,B,C所對的邊,向量=(2a+c,b),=(cosB,cosC),且,垂直.
( I)確定角B的大;
( II)若∠ABC的平分線BD交AC于點D,且BD=1,設(shè)BC=x,BA=y,試確定y關(guān)于x的函數(shù)式,并求邊AC長的取值范圍.

查看答案和解析>>

在△ABC中,a,b,c分別為角A,B,C所對的邊,向量=(2a+c,b),=(cosB,cosC),且,垂直.
( I)確定角B的大;
( II)若∠ABC的平分線BD交AC于點D,且BD=1,設(shè)BC=x,BA=y,試確定y關(guān)于x的函數(shù)式,并求邊AC長的取值范圍.

查看答案和解析>>

.選擇題(本大題共8小題,每小題5分,共40分)

                                                               

(1)B            (2)D            (3)C           (4)B

(5)D            (6)D            (7)A           (8)C

 

二.填空題(本大題共6小題,每小題5分,共30分)

  (9)(1,-1)      (10){y| y>1}, y = 2x-1 (x>1)    (11),

(12)         (13) 2              (14)R, R

三.解答題(本大題共6小題,共80分)

15. 解(Ⅰ)恰有一名男生的概率為. ……………………………3分

 (Ⅱ)至少有一名男生的概率為.       …………………………8分

  (Ⅲ)至多有一名男生的概率為.      …………………………13分

16. 解:(Ⅰ).        ……………………………3分

,cosC=>0,

故在中,、是銳角.  ∴,.

.   ……………………7分

(Ⅱ) .          ……………………10分

由正弦定理 .      解得,c=6.

.     ∴,即AC=5 .    ……………………13分

17. 解:(I)依條件得 ,      …………………2分

解得.                       …………………………………………4分

所以an=3+(n-1)=n+2.                 …………………………………………6分

  (II)Pn=, b6=2×26-1=64,

   由>64得n2+5n-128>0.                    ………………………………9分

所以n(n+5)>128.因為n是正整數(shù),且n=9時,n(n+5)=126,

 

所以當(dāng)n≥10時,n(n+5)>128.  即n≥10時,Pn> b6.  ……………………………13分

 

18. (Ⅰ)解:∵正三棱柱中AC∥A1C1,

∴∠CAD是異面直線AD與A1C1所成的角.         …………………………………2分

連結(jié)CD,易知AD=CD=a,AC= a, 在△ACD中易求出cos∠CAD=.

因此異面直線AD與A1C1所成的角的余弦值為.       …………………………4分

(Ⅱ)解:設(shè)AC中點為G,連結(jié)GB,GD,

∵△ABC是等邊三角形, ∴GB⊥AC.

又DB⊥面ABC, ∴GD⊥AC.

∴∠DGB是所求二面角的平面角.      …………………6分

依條件可求出GB=a.

∴tan∠DGB==.

∴∠DGB=arctan.                   ……………………………………………8分

(Ⅲ)證明:

∵D是B1B的中點,∴△C1B1D≌△ABD. ∴AD= C1D. 于是△ADC1是等腰三角形.

∵E是AC1的中點, ∴DE⊥AC1.    ………………………………………………10分

∵G是AC的中點,∴EG∥C1C∥DB,EG=C1C= DB.

∴四邊形EGBD是平行四邊形.  ∴ED∥GB.

∵G是AC的中點,且AB=BC,∴GB⊥AC. ∴ED⊥AC.

∵AC∩AC1=A,

∴ED⊥平面ACC1A1.                  …………………………………………13分

(或證ED∥GB,GB⊥平面ACC1A1得到ED⊥平面ACC1A1.)

 

19. 解:(Ⅰ)∵,

.                 ……………………………………3分

得,=0.

,

方程有兩個不同的實根、.

,由可知:

當(dāng)時,;

當(dāng)

當(dāng);

是極大值點,是極小值點.             ……………………………………7分

(Ⅱ)

所以得不等式.

. ………10分

又由(Ⅰ)知,

代入前面的不等式,兩邊除以(1+a),

并化簡得,解之得:,或(舍去).

所以當(dāng)時,不等式成立.          …………………………14分

 

20. 解:(Ⅰ)∵

.             ………………………………………………2分

又橢圓C經(jīng)過點B(0,-1),解得b2=1.

所以a2=2+1=3. 故橢圓C的方程為.      ……………………………4分

(Ⅱ)設(shè)l的方程為:y= kx+m,M(x1,y1)、N(x2,y2),

.

 則x1+x2= -.  ………………6分

 Δ=36 k2m2-12(m2-1)(1+3k2)=12[3k2-m2+1]>0       ①

 

設(shè)線段MN的中點G(x0,y0), 

  x0=,

線段MN的垂直平分線的方程為:y -.…………………8分

∵|, ∴線段MN的垂直平分線過B(0,-1)點.

∴-1-.     ∴m=.      ②

②代入①,得3k2 -(.   ③

∵|的夾角為60°,∴△BMN為等邊三角形.

∴點B到直線MN的距離d=.            ……………………………10分

,

又∵|MN|=

=

=,

.             ……………………………12分

解得k2=,滿足③式.  代入②,得m=.

直線l的方程為:y=.               ……………………………14分


同步練習(xí)冊答案