∴.所以的取值范圍是(-∞.-]. ------------- 7分 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)讀圖分析解答:設(shè)定義在閉區(qū)間[-4,4]上的函數(shù)y=f(x)的圖象如圖所示(圖中坐標點都是實心點),完成以下幾個問題:
(1)x∈[-2,3]時,y的取值范圍是
 

(2)該函數(shù)的值域為
 

(3)若y=f(x)的定義域為[-4,4],則函數(shù)y=f(x+1)的定義域為
 

(4)寫出該函數(shù)的一個單調(diào)增區(qū)間為
 

(5)使f(x)=3(x∈[-4,4])的x的值有
 
個.
(6)函數(shù)y=f(x)是區(qū)間x∈[-4,4]的
 
函數(shù).(填“奇”;“偶”或“非奇非偶”)
(7)若方程f(x)=5-3a在區(qū)間[-4,4]上有且只有三個解,求f(a)的取值范圍.

查看答案和解析>>

讀圖分析解答:設(shè)定義在閉區(qū)間[-4,4]上的函數(shù)y=f(x)的圖象如圖所示(圖中坐標點都是實心點),完成以下幾個問題:
(1)x∈[-2,3]時,y的取值范圍是________.
(2)該函數(shù)的值域為________.
(3)若y=f(x)的定義域為[-4,4],則函數(shù)y=f(x+1)的定義域為________.
(4)寫出該函數(shù)的一個單調(diào)增區(qū)間為________.
(5)使f(x)=3(x∈[-4,4])的x的值有________個.
(6)函數(shù)y=f(x)是區(qū)間x∈[-4,4]的________函數(shù).(填“奇”;“偶”或“非奇非偶”)
(7)若方程f(x)=5-3a在區(qū)間[-4,4]上有且只有三個解,求f(a)的取值范圍.

查看答案和解析>>

本題有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.

(1)(本小題滿分7分)選修4—2:矩陣與變換

已知二階矩陣有特征值及對應的一個特征向量

(Ⅰ)求矩陣;

(Ⅱ)設(shè)曲線在矩陣的作用下得到的方程為,求曲線的方程.

(2)(本小題滿分7分)選修4—4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),若圓在以該直角坐標系的原點為極點、軸的正半軸為極軸的極坐標系下的方程為

(Ⅰ)求曲線的普通方程和圓的直角坐標方程;

(Ⅱ)設(shè)點是曲線上的動點,點是圓上的動點,求的最小值.

(3)(本小題滿分7分)選修4—5:不等式選講

已知函數(shù)不等式上恒成立.

(Ⅰ)求的取值范圍;

(Ⅱ)記的最大值為,若正實數(shù)滿足,求的最大值.

查看答案和解析>>

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對應的變換矩陣為M1,變換T2對應的變換矩陣是M2=
11
01

(I)求點P(2,1)在T1作用下的點Q的坐標;
(II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標系與參數(shù)方程
從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
(Ⅰ)求動點P的極坐標方程;
(Ⅱ)設(shè)R為l上的任意一點,試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為{x|x≥
1
2
或x≤-
5
6
}
,求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數(shù)x恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對應的變換矩陣為M1,變換T2對應的變換矩陣是;
(I)求點P(2,1)在T1作用下的點Q的坐標;
(II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標系與參數(shù)方程
從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
(Ⅰ)求動點P的極坐標方程;
(Ⅱ)設(shè)R為l上的任意一點,試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為,求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數(shù)x恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>


同步練習冊答案