題目列表(包括答案和解析)
設F1,F(xiàn)2分別是橢圓(a>b>0)的左、右焦點
(1)若橢圓C上的點到F1,F(xiàn)2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標;
(2)設點P是(1)中所得橢圓上的動點,,求PQ的最大值;
(3)已知橢圓具有性質:若M,N是橢圓C上關于原點對稱的兩個點,點P是橢圓上任意一點,當直線PM,PN的斜率都存在,并記為KPM、KPN時,那么KPM與KPN之積是與點P位置無關的定值.試對雙曲線寫出具有類似特性的性質,并加以證明.
設F1、F2分別為橢圓C:=1(a>b>0)的左、右兩個焦點.
(1)若橢圓C上的點A(1,)到F1、F2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標;
(2)設點K是(1)中所得橢圓上的動點,求線段F1K的中點的軌跡方程;
(3)已知橢圓具有性質:若M、N是橢圓C上關于原點對稱的兩個點,點P是橢圓上任意一點,當直線PM、PN的斜率都存在,并記為kPM、kPN時,那么kPM與kPN之積是與點P位置無關的定值,試寫出雙曲線=1具有類似特性的性質并加以證明.
設F1、F2分別為橢圓C:=1(a>b>0)的左、右兩個焦點.
(1)若橢圓C上的點A(1,)到F1、F2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標;
(2)設點K是(1)中所得橢圓上的動點,求線段F1K的中點的軌跡方程;
(3)已知橢圓具有性質:若M、N是橢圓C上關于原點對稱的兩個點,點P是橢圓上任意一點,當直線PM、PN的斜率都存在,并記為kPM、kPN時,那么kPM與kPN之積是與點P位置無關的定值,試寫出雙曲線=1具有類似特性的性質并加以證明.
|
設F1、F2分別為橢圓C:+=1(a>b>0)的左、右兩個焦點.
(1)若橢圓C上的點A(1,)到F1、F2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標.
(2)設點K是(1)中所得橢圓上的動點,求線段F1K的中點的軌跡方程.
(3)已知橢圓具有性質:若M、N是橢圓C上關于原點對稱的兩個點,點P是橢圓上任意一點,當直線PM、PN的斜率都存在,并記為kPM、kPN時,那么kPM與kPN之積是與點P位置無關的定值,試寫出雙曲線=1具有類似特性的性質并加以證明.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com