設A.B是銳角三角形兩內(nèi)角.給出下面四個結論: 查看更多

 

題目列表(包括答案和解析)

(2006•上海模擬)設A,B是銳角三角形的兩個內(nèi)角,則復數(shù)z=(ctgB-tanA)+(tanB-tanA)i對應點位于復平面的( 。

查看答案和解析>>

設A,B是銳角三角形的兩個內(nèi)角,則復數(shù)z=(ctgB-tanA)+(tanB-tanA)i對應點位于復平面的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

設A,B是銳角三角形的兩個內(nèi)角,則復數(shù)z=(ctgB-tanA)+(tanB-tanA)i對應點位于復平面的( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

設A,B是銳角三角形的兩個內(nèi)角,則復數(shù)z=(ctgB-tanA)+(tanB-tanA)i對應點位于復平面的


  1. A.
    第一象限
  2. B.
    第二象限
  3. C.
    第三象限
  4. D.
    第四象限

查看答案和解析>>

已知函數(shù)f(x)= x·sinx,若A、B是銳角三角形兩個內(nèi)角,則(    )

A.f(-sinA)>f(-sinB)               B.f(cosA)>f(cosB)

C.f(-cosA)>f(-sinB)               D.f(cosA)<f(sinB)

查看答案和解析>>

一、選擇題(本大題12小題,每小題5分,共60分)

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

C

D

D

A

B

C

C

C

A

D

A

二、填空題(本大題共4小題,每小題4分,共16分)

13.4949;      14.[]            15.②④;             16.x<0或x>2

三、解答題(本大題共6小題共74分)

17.解(1)設,由,有x+y=-1                         ①……………1分

  的夾角為,有,

  ∴,則x2+y2=1                                                             ②……………2分

  由①②解得,∴(-1,0)或(0,-1)       ……………4分

  (2)由2B=A+CB=                      ……………5分

  由垂直知(0,-1),則

                                  ……………6分

  ∴

  =1+                   ……………8分

  ∵0<A<

  ∴-1≤cos(2A+)<

  即                                                               ………………10分

  故                                                           ………………12分

18.解:(1)過點AAFCBCB延長線于點F,連結EF,則AF⊥平面BCC1B1,∠AEF為所求直線AE與平面BCC1B1所成的角.                 …………………2分

  在Rt△AEF中,AF=AEF=

  故直線AE與平面BCC1B1所成的角為arctan             …………………6分

  (2)以O為原點,OBx軸,OCy軸,建立空間直角坐標系O-xyz,則

    A (0,-),E (0,),D1 (-1,0,2)

                                          …………………8分

   設平面AED1的一個法向量

   取z=2,得=(3,-1,2)

   ∴點O到平面AED1的距離為d=              …………………12分

19.解(1)由(an+1+an+2+an+3)-(an+an+1+an+2)=1,

   ∴a1?a4,a7…,a3n-2是首項為1,公差為1的等差數(shù)列,

   ∴Pn=                                                …………………4分

   由

   ∴b2,b5,b8, …b3n-1是以1為首項,公比為-1的等比數(shù)列

   ∴Qn=                                 …………………8分

   (2)對于Pn≤100Qn

   當n為偶數(shù)時,不等式顯然不成立;

   當n為奇數(shù)時,,解得n=1,3,…,13.

所求之和為                                         ………………12分

20.解∵P(x=6)=                                                   ………………3分

  P(x=7)=                                             ………………6分

  P(x=8)=                                                      ………………9分

  ∴P(x≥6)=                                           ………………12分

  答:線路信息暢通的概率為

21.解:因為f(x)=3x2+6ax+b,由題設得

 

  解得:                                                       ………………4分

  ∴當時,f(x)=3x2+6x+3=3(x+1)2≥0,于是f(x)不存在極值;

  當時,f(x)=3x2+12x+9=3(x+1)(x+3),符合條件。    ………………6分

  且f(1)=20, f(0)=4,于是由題設得:3x2+12x+9≤20m-8在區(qū)間[-4,3]上恒成立,又f(x)=3x2+12x+9=3(x+2)2-3在區(qū)間 [-4,3]上的最大值為72.

 ∴,即實數(shù)m的取值范圍是.

22.(1)設M (x,y),則由O是原點得

  A (2,0),B  (2,1),C (0,1),從而(x,y),

 

  由得(x,y)?(x-2,y)=k[(x,y-1)?(x-2,y-1)-|y-1|2]

  即(1-k)x2+2(k-1)x+y2=0為所求軌跡方程                                   ………………4分

  ①當k=1時,y=0動點M的軌跡是一條直線

②當k≠1時,(x-1)2+

k=0時,動點M軌跡是一個圓

k>1時,動點M軌跡是一條雙曲線;

0<k<1或k<0時軌跡是一個橢圓 .                                     ………………6分

(2)當k=時,動點M的軌跡方程為(x-1)2+2y2=1即y2=-(x-1)2

從而

又由(x-1)2+2y2=1   ∴0≤x≤2

∴當x=時,的最大值為.

x=0時,的最大值為16.

的最大值為4,最小值為                     …………………10分

(3)由

①當0<k<1時,a2=1,b2=1-k,c2=k

e2=k

②當k<0時,e2=

k                                                      …………………14分

 


同步練習冊答案