法2:以CA.CB所在直線分別為x.y軸建系則A.B(0..0). 查看更多

 

題目列表(包括答案和解析)

(2013•黃岡模擬)在矩形ABCD中,|AB|=2
3
,|AD|=2,E、F、G、H分別為矩形四條邊的中點,以HF、GE所在直線分別為x,y軸建立直角坐標系(如圖所示).若R、R′分別在線段0F、CF上,且
|OR|
|OF|
=
|CR′|
|OF|
=
1
n

(Ⅰ)求證:直線ER與GR′的交點P在橢圓Ω:
x2
3
+y2=1上;
(Ⅱ)若M、N為橢圓Ω上的兩點,且直線GM與直線GN的斜率之積為
2
3
,求證:直線MN過定點.

查看答案和解析>>

在矩形ABCD中,|AB|=2
3
,|AD|=2,E、F、G、H分別為矩形四條邊的中點,以HF、GE所在直線分別為x,y軸建立直角坐標系(如圖所示).若R、R′分別在線段0F、CF上,且
|OR|
|OF|
=
|CR′|
|CF|
=
1
n

(Ⅰ)求證:直線ER與GR′的交點P在橢圓Ω:
x2
3
+y2=1上;
(Ⅱ)若M、N為橢圓Ω上的兩點,且直線GM與直線GN的斜率之積為
2
3
,求證:直線MN過定點;并求△GMN面積的最大值.

查看答案和解析>>

在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分別為矩形四條邊的中點,以HF、GE所在直線分別為x,y軸建立直角坐標系(如圖所示).若R、R′分別在線段0F、CF上,且.

(Ⅰ)求證:直線ER與GR′的交點P在橢圓+=1上;

(Ⅱ)若M、N為橢圓上的兩點,且直線GM與直線GN的斜率之積為,求證:直線MN過定點.

 

查看答案和解析>>

在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分別為矩形四條邊的中點,以HF、GE所在直線分別為x,y軸建立直角坐標系(如圖所示).若R、R′分別在線段0F、CF上,且==.

(Ⅰ)求證:直線ER與GR′的交點P在橢圓+=1上;

(Ⅱ)若M、N為橢圓上的兩點,且直線GM與直線GN的斜率之積為,求證:直線MN過定點

 

查看答案和解析>>

在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分別為矩形四條邊的中點,以HF、GE所在直線分別為x,y軸建立直角坐標系(如圖所示).若R、R′分別在線段0F、CF上,且==.

(Ⅰ)求證:直線ER與GR′的交點P在橢圓+=1上;

(Ⅱ)若M、N為橢圓上的兩點,且直線GM與直線GN的斜率之積為,求證:直線MN過定點;并求△GMN面積的最大值.

 

查看答案和解析>>


同步練習冊答案