20.本小題滿分12分 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)如圖,在直三棱柱ABCA1B1C1中,∠ACB = 90°. AC = BC = a,

    D、E分別為棱AB、BC的中點(diǎn), M為棱AA1­上的點(diǎn),二面角MDEA為30°.

   (1)求MA的長(zhǎng);w.w.w.k.s.5.u.c.o.m      

   (2)求點(diǎn)C到平面MDE的距離。

查看答案和解析>>

(本小題滿分12分)某校高2010級(jí)數(shù)學(xué)培優(yōu)學(xué)習(xí)小組有男生3人女生2人,這5人站成一排留影。

(1)求其中的甲乙兩人必須相鄰的站法有多少種? w.w.w.k.s.5.u.c.o.m      

(2)求其中的甲乙兩人不相鄰的站法有多少種?

(3)求甲不站最左端且乙不站最右端的站法有多少種 ?

查看答案和解析>>

(本小題滿分12分)

某廠有一面舊墻長(zhǎng)14米,現(xiàn)在準(zhǔn)備利用這面舊墻建造平面圖形為矩形,面積為126平方米的廠房,工程條件是①建1米新墻費(fèi)用為a元;②修1米舊墻的費(fèi)用為元;③拆去1米舊墻,用所得材料建1米新墻的費(fèi)用為元,經(jīng)過(guò)討論有兩種方案: (1)利用舊墻的一段x米(x<14)為矩形廠房一面的邊長(zhǎng);(2)矩形廠房利用舊墻的一面邊長(zhǎng)x≥14.問(wèn)如何利用舊墻,即x為多少米時(shí),建墻費(fèi)用最省?(1)、(2)兩種方案哪個(gè)更好?

 

查看答案和解析>>

(本小題滿分12分)

已知a,b是正常數(shù), ab, x,y(0,+∞).

   (1)求證:,并指出等號(hào)成立的條件;w.w.w.k.s.5.u.c.o.m           

   (2)利用(1)的結(jié)論求函數(shù)的最小值,并指出取最小值時(shí)相應(yīng)的x 的值.

查看答案和解析>>

(本小題滿分12分)

已知a=(1,2), b=(-2,1),xab,y=-kab (kR).

   (1)若t=1,且xy,求k的值;

   (2)若tR ,x?y=5,求證k≥1.

查看答案和解析>>

一.選擇題

   CADAD   CBCAD    BB

二.填空題

  ;61; 4;

三.解答題

17. 解:(I)由…………………………….2分

,所以為第一、三象限角

,所以,故 ……………..4分

(II)原式…………………………………6分

         ……..10分

18.解:                              ……………..2分

                                                        ……………..4分

      ,且該區(qū)間關(guān)于對(duì)稱的.              ……………..6分

恰好有3個(gè)元素,所以.         ……………..8分

,                                     ……………..10分

解之得:.                                      ……………..12分

19. 解:(Ⅰ)∵

                   ,        ……………..2分

的圖象的對(duì)稱中心為,              ……………..4分

又已知點(diǎn)的圖象的一個(gè)對(duì)稱中心,∴,

,∴.                                  ……………..6分

(Ⅱ)若成立,即時(shí),,,…8分

,                    ……………..10分

 ∵ 的充分條件,∴,解得,

的取值范圍是.                                ……………..12分

20.(1)                                           1分

又當(dāng)時(shí),                                            2分

當(dāng)時(shí),

上式對(duì)也成立,

,                             

總之,                                                                 5分

(2)將不等式變形并把代入得:

                           7分

設(shè)

又∵

,即.                                 10分

的增大而增大,

.                                                                                     12分

 

 

 

21. 解:(I)

………………………………………………..2分

由正弦定理得:

整理得:………………………………………..4分

由余弦定理得:

…………………………………………………………………………6分

(II)由,即

……..8分

另一方面…………………...10分

由余弦定理得

當(dāng)且僅當(dāng)時(shí)取等號(hào),所以的最小值為……………………………………………12分

22. 解:(I)由題意知.

  又對(duì)

,即上恒成立,上恒成立。所以.………………………..........3分

,于是

,所以的遞增區(qū)間為………………….4分

(II).

。又上是增函數(shù),

所以原不等式.

設(shè),只需的最小值不小于.………………………....6分

.

所以,當(dāng)時(shí)取等號(hào),即

解得.

 又所以只需.

所以存在這樣的值使得不等式成立.………………………………………………………...8分

(III)由變形得

,

,

要使對(duì)任意的,恒有成立,

只需滿足,……………………………………...10分

解得,即.……………………………………………………...12分

 

 

備選題:

設(shè)全集,函數(shù)的定義域?yàn)锳,集合,若恰好有2個(gè)元素,求a的取值集合.

 

 

18.(本小題滿分12分)

已知函數(shù)

(Ⅰ)當(dāng)時(shí),若,求函數(shù)的值;

(Ⅱ)把函數(shù)的圖象按向量平移得到函數(shù)的圖象,若函數(shù)是偶函數(shù),寫出最小的向量的坐標(biāo).

解:(Ⅰ),

 

(Ⅱ)設(shè),所以,要使是偶函數(shù),

即要,即, ,

當(dāng)時(shí),最小,此時(shí), 即向量的坐標(biāo)為

 

 

22.(本小題滿分14分)

已知數(shù)列(常數(shù)),對(duì)任意的正整數(shù),并有滿足.

(Ⅰ)求的值;

(Ⅱ)試確定數(shù)列是否是等差數(shù)列,若是,求出其通項(xiàng)公式,若不是,說(shuō)明理由;

(Ⅲ)對(duì)于數(shù)列,假如存在一個(gè)常數(shù)使得對(duì)任意的正整數(shù)都有,且,則稱為數(shù)列的“上漸近值”,令,求數(shù)列的“上漸近值”.

解:(Ⅰ),即

   (Ⅱ)  

       ∴是一個(gè)以為首項(xiàng),為公差的等差數(shù)列。

  (Ⅲ)

       ∴    

      又∵,∴數(shù)列的“上漸近值”為

 

 

 

 

 

 


同步練習(xí)冊(cè)答案