的條件下.設(shè).問是否存在最大的整數(shù)m.使得對任意.均有若存在.求出的值.若不存在.說明理由. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)已知:如圖,拋物線y=x2+bx+c(b、c為常數(shù))經(jīng)過原點和E(3,0).
(1)求該拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)A是該拋物線上位于x軸下方、且在對稱軸左側(cè)的一個動點,過A作x軸的平行線,交拋物線于另一點D,再作AB⊥x軸于B,DC⊥x軸于C.
①當(dāng)BC=1時,求矩形ABCD的周長;
②試問矩形ABCD的周長是否存在最大值?如果存在,請求出這個最大值及此時點A的坐標(biāo);如果不存在,請說明理由;
③當(dāng)B(
12
,0)時,x軸上是否存在兩點P、Q(點P在點Q的左邊),使得四邊形PQDA是菱形?若存在,請求出符合條件的所有點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

如圖,在平面直角坐標(biāo)系中,直線與x軸、y軸分別交于點B、C;拋物線y=-x2+bx+c經(jīng)過B、C兩點,并與x軸交于另一點A.
(1)求該拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)P(x,y)是在第一象限內(nèi)該拋物線上的一個動點,過點P作直線l⊥x軸于點M,交直線BC于點N.
①試問:線段PN的長度是否存在最大值?若存在,求出它的最大值及此時x的值;若不存在,請說明理由;
②當(dāng)x=______時,P、C、O、N四點能圍成平行四邊形.
(3)連接PC,在(2)的條件下,解答下列問題:
①請用含x的式子表示線段BN的長度:BN=______;
②若PC⊥BC,試求出此時點M的坐標(biāo).

查看答案和解析>>

如圖,在平面直角坐標(biāo)系中,直線數(shù)學(xué)公式與x軸、y軸分別交于點B、C;拋物線y=-x2+bx+c經(jīng)過B、C兩點,并與x軸交于另一點A.
(1)求該拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)P(x,y)是在第一象限內(nèi)該拋物線上的一個動點,過點P作直線l⊥x軸于點M,交直線BC于點N.
①試問:線段PN的長度是否存在最大值?若存在,求出它的最大值及此時x的值;若不存在,請說明理由;
②當(dāng)x=______時,P、C、O、N四點能圍成平行四邊形.
(3)連接PC,在(2)的條件下,解答下列問題:
①請用含x的式子表示線段BN的長度:BN=______;
②若PC⊥BC,試求出此時點M的坐標(biāo).

查看答案和解析>>

已知:如圖,拋物線軸交于點,與軸交于點A、B,點A的坐標(biāo)為(4,0)

【小題1】求該拋物線的解析式;
【小題2】點Q是線段AB上的動點,過點Q作QE//AC,交BC于點E,連接CQ,設(shè)△CQE的面積為S,Q(m,0),試求S與m之間的函數(shù)關(guān)系式(寫出自變量m的取值范圍);
【小題3】在(2)的條件下,當(dāng)△CQE的面積最大時,求點E的坐標(biāo).
【小題4】若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標(biāo)為(2,0). 問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

(2012•孝感模擬)如圖,在平面直角坐標(biāo)系中,直線y=-
3
4
x+3
與x軸、y軸分別交于點B、C;拋物線y=-x2+bx+c經(jīng)過B、C兩點,并與x軸交于另一點A.
(1)求該拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)P(x,y)是在第一象限內(nèi)該拋物線上的一個動點,過點P作直線l⊥x軸于點M,交直線BC于點N.
①試問:線段PN的長度是否存在最大值?若存在,求出它的最大值及此時x的值;若不存在,請說明理由;
②當(dāng)x=
1或3
1或3
時,P、C、O、N四點能圍成平行四邊形.
(3)連接PC,在(2)的條件下,解答下列問題:
①請用含x的式子表示線段BN的長度:BN=
5-
5
4
x
5-
5
4
x
;
②若PC⊥BC,試求出此時點M的坐標(biāo).

查看答案和解析>>


同步練習(xí)冊答案