已知函數(shù)有極大值9. (1)求m的值, (2)若斜率為-5的直線是曲線的切線.求此直線方程. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)(m為常數(shù),且m>0)有極大值9.

  (1)求m的值;

  (2)若斜率為-5的直線是曲線的切線,求此直線方程

 

查看答案和解析>>

(本題滿分12分)

已知函數(shù)(m為常數(shù),且m>0)有極大值9.

(1)求m的值;

(2)若斜率為-5的直線是曲線的切線,求此直線方程.

 

查看答案和解析>>

(本小題12分)已知函數(shù)m為常數(shù),m>0)有極大值9.

(1)求m的值;

(2)若斜率為-5的直線是曲線的切線,求此直線方程.

 

查看答案和解析>>

(本小題滿分12分)已知函數(shù)m為常數(shù),且m>0)有極大值9.

  (Ⅰ)求m的值;

  (Ⅱ)若斜率為-5的直線是曲線的切線,求此直線方程.

查看答案和解析>>

已知函數(shù)(m為常數(shù),且m>0)有極大值9.

 (Ⅰ)求m的值;

 (Ⅱ)若斜率為-5的直線是曲線的切線,求此直線方程.

 

查看答案和解析>>

ABABD  DCAAD  AC

13. 2; 14.52; 15. ; 16 ,0    17. 或

18. 解:(Ⅰ) f’(x)=3x2+2mx-m2=(x+m)(3x-m)=0,則x=-m或x=m,

    當(dāng)x變化時(shí),f’(x)與f(x)的變化情況如下表:

x

(-∞,-m)

-m

(-m,)

(,+∞)

f’(x)

+

0

0

+

f (x)

 

極大值

 

極小值

 

從而可知,當(dāng)x=-m時(shí),函數(shù)f(x)取得極大值9,

即f(-m)=-m3+m3+m3+1=9,∴m=2.

(Ⅱ)由(Ⅰ)知,f(x)=x3+2x2-4x+1,

依題意知f’(x)=3x2+4x-4=-5,∴x=-1或x=-.

又f(-1)=6,f(-)=,

所以切線方程為y-6=-5(x+1),或y-=-5(x+),

即5x+y-1=0,或135x+27y-23=0.

19. 解:(1)由已知,,分別取,得,,,

;

所以數(shù)列的前5項(xiàng)是:,,,,;

(2)由(1)中的分析可以猜想.

下面用數(shù)學(xué)歸納法證明:

①當(dāng)時(shí),猜想顯然成立.

②假設(shè)當(dāng)時(shí)猜想成立,即.

那么由已知,得,

即.所以,

即,又由歸納假設(shè),得,

所以,即當(dāng)時(shí),公式也成立.

當(dāng)①和②知,對(duì)一切,都有成立.

20. 解: (Ⅰ)改進(jìn)工藝后,每件產(chǎn)品的銷售價(jià)為,月平均銷售量為件,則月平均利潤(rùn)(元),

∴與的函數(shù)關(guān)系式為  .

(Ⅱ)由得,(舍),

當(dāng)時(shí);時(shí),

∴函數(shù) 在取得最大值.

故改進(jìn)工藝后,產(chǎn)品的銷售價(jià)為元時(shí),旅游部門銷售該紀(jì)念品的月平均利潤(rùn)最大.

21. 解:(1)因?yàn)椋? 

       所以滿足條件

       又因?yàn)楫?dāng)時(shí),,所以方程有實(shí)數(shù)根0.

       所以函數(shù)是集合M中的元素.

     (2)假設(shè)方程存在兩個(gè)實(shí)數(shù)根),

       則,

    不妨設(shè),根據(jù)題意存在數(shù)

       使得等式成立

       因?yàn)椋?/p>

       與已知矛盾,所以方程只有一個(gè)實(shí)數(shù)根.

22. 解:(Ⅰ),.∴直線的斜率為,且與函數(shù)的圖象的切點(diǎn)坐標(biāo)為.   ∴直線的方程為. 又∵直線與函數(shù)的圖象相切,

∴方程組有一解.  由上述方程消去,并整理得

         ①

依題意,方程①有兩個(gè)相等的實(shí)數(shù)根,

解之,得或       .

(Ⅱ)由(Ⅰ)可知, 

 .  .

∴當(dāng)時(shí),,當(dāng)時(shí),.

∴當(dāng)時(shí),取最大值,其最大值為2.

(Ⅲ) .

,  , .

由(Ⅱ)知當(dāng)時(shí),   ∴當(dāng)時(shí),,

.      ∴

 

 

 

 

 

 

 


同步練習(xí)冊(cè)答案