解: 20解 查看更多

 

題目列表(包括答案和解析)

15.解:根據(jù)條件去畫滿足條件的二次函數(shù)圖象就可判斷出

某大型超市為促銷商品,特舉辦“購物搖獎100%中獎”活動,凡消費者在該超市購物滿20元,享受一次搖獎機會,購物滿40元,享受兩次搖獎機會,依次類推。搖獎機的旋轉(zhuǎn)圓盤是均勻的,扇形區(qū)域A、B、C、D、E所對應(yīng)的圓心角的比值分別為1:2:3:4:5。相應(yīng)區(qū)域分別設(shè)立一、二、三、四、五等獎,獎金分別為5元、4元、3元、2元、1元。求某人購物30元,獲得獎金的分布列.

查看答案和解析>>

解:已知曲線C:x2+y2﹣4ax+2ay﹣20+20a=0.
(1)證明:不論a取何實數(shù),曲線C必過一定點;
(2)當(dāng)a≠2時,證明曲線C是一個圓,且圓心在一條直線上;
(3)若曲線C與x軸相切,求a的值

查看答案和解析>>

20世紀90年代,氣候變化專業(yè)委員會向政府提供的一項報告指出:全球氣候逐年變暖的一個重要因素是人類在能源利用與森林砍伐中使CO2體積分數(shù)增加.據(jù)測,1990年、1991年、1992年大氣中的CO2體積分數(shù)分別比1989年增加了1個可比單位、3個可比單位、6個可比單位.若用一個函數(shù)模擬20世紀90年代中每年CO2體積分數(shù)增加的可比單位數(shù)y與年份增加數(shù)x(即當(dāng)年數(shù)與1989的差)的關(guān)系,模擬函數(shù)可選用二次函數(shù)f(x)=px2+qx+r(其中p,q,r為常數(shù))或函數(shù) g(x)=abx+c(其中a,b,c為常數(shù),且b>0,b≠1),
(1)根據(jù)題中的數(shù)據(jù),求f(x)和g(x)的解析式;
(2)如果1994年大氣中的CO2體積分數(shù)比1989年增加了16個可比單位,請問用以上哪個函數(shù)作為模擬函數(shù)較好?并說明理由.

查看答案和解析>>

(20) (本題滿分14分)命題:不等式對一切恒成立;命題:不等式的解集為. 如果為真,為假,求實數(shù)的取值范圍.

查看答案和解析>>

20世紀90年代,氣候變化專業(yè)委員會向政府提供的一項報告指出:全球氣候逐年變暖的一個重要因素是人類在能源利用與森林砍伐中使CO2體積分數(shù)增加.據(jù)測,1990年、1991年、1992年大氣中的CO2體積分數(shù)分別比1989年增加了1個可比單位、3個可比單位、6個可比單位.若用一個函數(shù)模擬20世紀90年代中每年CO2體積分數(shù)增加的可比單位數(shù)y與年份增加數(shù)x(即當(dāng)年數(shù)與1989的差)的關(guān)系,模擬函數(shù)可選用二次函數(shù)f(x)=px2+qx+r(其中p,q,r為常數(shù))或函數(shù) g(x)=abx+c(其中a,b,c為常數(shù),且b>0,b≠1),
(1)根據(jù)題中的數(shù)據(jù),求f(x)和g(x)的解析式;
(2)如果1994年大氣中的CO2體積分數(shù)比1989年增加了16個可比單位,請問用以上哪個函數(shù)作為模擬函數(shù)較好?并說明理由.

查看答案和解析>>

ABABD  DCAAD  AC

13. 2; 14.52; 15. ; 16 ,0    17. 或

18. 解:(Ⅰ) f’(x)=3x2+2mx-m2=(x+m)(3x-m)=0,則x=-m或x=m,

    當(dāng)x變化時,f’(x)與f(x)的變化情況如下表:

x

(-∞,-m)

-m

(-m,)

(,+∞)

f’(x)

+

0

0

+

f (x)

 

極大值

 

極小值

 

從而可知,當(dāng)x=-m時,函數(shù)f(x)取得極大值9,

即f(-m)=-m3+m3+m3+1=9,∴m=2.

(Ⅱ)由(Ⅰ)知,f(x)=x3+2x2-4x+1,

依題意知f’(x)=3x2+4x-4=-5,∴x=-1或x=-.

又f(-1)=6,f(-)=,

所以切線方程為y-6=-5(x+1),或y-=-5(x+),

即5x+y-1=0,或135x+27y-23=0.

19. 解:(1)由已知,,分別取,得,,,

所以數(shù)列的前5項是:,,,,;

(2)由(1)中的分析可以猜想.

下面用數(shù)學(xué)歸納法證明:

①當(dāng)時,猜想顯然成立.

②假設(shè)當(dāng)時猜想成立,即.

那么由已知,得,

即.所以,

即,又由歸納假設(shè),得,

所以,即當(dāng)時,公式也成立.

當(dāng)①和②知,對一切,都有成立.

20. 解: (Ⅰ)改進工藝后,每件產(chǎn)品的銷售價為,月平均銷售量為件,則月平均利潤(元),

∴與的函數(shù)關(guān)系式為  .

(Ⅱ)由得,(舍),

當(dāng)時;時,

∴函數(shù) 在取得最大值.

故改進工藝后,產(chǎn)品的銷售價為元時,旅游部門銷售該紀念品的月平均利潤最大.

21. 解:(1)因為,  

       所以滿足條件

       又因為當(dāng)時,,所以方程有實數(shù)根0.

       所以函數(shù)是集合M中的元素.

     (2)假設(shè)方程存在兩個實數(shù)根),

       則,

    不妨設(shè),根據(jù)題意存在數(shù)

       使得等式成立

       因為,所以

       與已知矛盾,所以方程只有一個實數(shù)根.

22. 解:(Ⅰ),.∴直線的斜率為,且與函數(shù)的圖象的切點坐標(biāo)為.   ∴直線的方程為. 又∵直線與函數(shù)的圖象相切,

∴方程組有一解.  由上述方程消去,并整理得

         ①

依題意,方程①有兩個相等的實數(shù)根,

解之,得或       .

(Ⅱ)由(Ⅰ)可知, 

 .  .

∴當(dāng)時,,當(dāng)時,.

∴當(dāng)時,取最大值,其最大值為2.

(Ⅲ) .

,  , .

由(Ⅱ)知當(dāng)時,   ∴當(dāng)時,,

.      ∴

 

 

 

 

 

 

 


同步練習(xí)冊答案