又適合上式 所以 查看更多

 

題目列表(包括答案和解析)

如圖SA⊥平面ABC,AB⊥BC,過A做SB的垂線,垂足為E,過E做SC的垂線,垂足為F,求證AF⊥SC.以下是證明過程:
要證AF⊥SC
只需證  SC⊥平面AEF
只需證  AE⊥SC(因為EF⊥SC)
只需證  AE⊥平面SBC
只需證
(因為AE⊥SB)
只需證  BC⊥平面SAB
只需證
(因為AB⊥BC)
由只需證  SA⊥平面ABC可知上式成立
所以AF⊥SC
把證明過程補充完整①
AE⊥BC
AE⊥BC
BC⊥SA
BC⊥SA

查看答案和解析>>

如圖⊥平面,,過

的垂線,垂足為,過的垂線,垂足為

,求證。以下是證明過程:

要證                     

只需證  ⊥平面

只需證  (因為

只需證  ⊥平面

只需證       ①    (因為

只需證  ⊥平面

只需證       ②    (因為

由只需證  ⊥平面可知上式成立

所以

把證明過程補充完整①                           

 

查看答案和解析>>

如下圖所示,SA⊥平面ABC,AB⊥BC,過A作SB的垂線,垂足為E,過E作SC的垂線,垂足為F.求證:AF⊥SC.

證明:要證AF⊥SC,只需證SC⊥平面AEF,只需證AE⊥SC(因為___________),只需證___________,只需證AE⊥BC(因為___________),只需證BC⊥平面SAB,只需證BC⊥SA(因為___________).由SA⊥平面ABC可知,上式成立.所以,AF⊥SC.

查看答案和解析>>

已知曲線上動點到定點與定直線的距離之比為常數(shù)

(1)求曲線的軌跡方程;

(2)若過點引曲線C的弦AB恰好被點平分,求弦AB所在的直線方程;

(3)以曲線的左頂點為圓心作圓,設(shè)圓與曲線交于點與點,求的最小值,并求此時圓的方程.

【解析】第一問利用(1)過點作直線的垂線,垂足為D.

代入坐標(biāo)得到

第二問當(dāng)斜率k不存在時,檢驗得不符合要求;

當(dāng)直線l的斜率為k時,;,化簡得

第三問點N與點M關(guān)于X軸對稱,設(shè),, 不妨設(shè)

由于點M在橢圓C上,所以

由已知,則

由于,故當(dāng)時,取得最小值為

計算得,,故,又點在圓上,代入圓的方程得到.  

故圓T的方程為:

 

查看答案和解析>>

對于對立事件AA,A+A是一個__________,它的概率是__________,又AA互斥,則P(A+A)=__________=1.即對立事件的概率和等于1.上式還可得到_________.

查看答案和解析>>


同步練習(xí)冊答案