題目列表(包括答案和解析)
如圖1:等邊可以看作由等邊繞頂點經(jīng)過旋轉(zhuǎn)相似變換得到.但是我們注意到圖形中的和的關(guān)系,上述變換也可以理解為圖形是由繞頂點旋轉(zhuǎn)形成的.于是我們得到一個結(jié)論:如果兩個正三角形存在著公共頂點,則該圖形可以看成是由一個三角形繞著該頂點旋轉(zhuǎn)形成的.
① 利用上述結(jié)論解決問題:如圖2,中,都是等邊三角形,求四邊形的面積;
② 圖3中, ∽,,仿照上述結(jié)論,推廣出符合圖3的結(jié)論.(寫出結(jié)論即可)
如圖,已知⊙中,直徑垂直于弦,垂足為,是延長線上一點,切⊙于點,連接交于點,證明:
【解析】本試題主要考查了直線與圓的位置關(guān)系的運用。要證明角相等,一般運用相似三角形來得到,或者借助于弦切角定理等等。根據(jù)為⊙的切線,∴為弦切角
連接 ∴…注意到是直徑且垂直弦,所以 且…利用,可以證明。
解:∵為⊙的切線,∴為弦切角
連接 ∴……………………4分
又∵ 是直徑且垂直弦 ∴ 且……………………8分
∴ ∴
小明參加完高考后,某日路過一家電子游戲室,注意到一臺電子游戲機的規(guī)則是:你可在1,2,3,4,5,6點中選一個,押上賭注a元。擲3枚骰子,如果所押的點數(shù)出現(xiàn)1次、2次、3次,那么原來的賭注仍還給你,并且你還分別可以收到賭注的1倍、2倍、3倍的獎勵。如果所押的點數(shù)不出現(xiàn),那么賭注就被莊家沒收。
(1)求擲3枚骰子,至少出現(xiàn)1枚為1點的概率;
(2)如果小明準備嘗試一次,請你計算一下他獲利的期望值,并給小明一個正確的建議。
如圖1:等邊可以看作由等邊繞頂點經(jīng)過旋轉(zhuǎn)相似變換得到.但是我們注意到圖形中的和的關(guān)系,上述變換也可以理解為圖形是由繞頂點旋轉(zhuǎn)形成的.于是我們得到一個結(jié)論:如果兩個正三角形存在著公共頂點,則該圖形可以看成是由一個三角形繞著該頂點旋轉(zhuǎn)形成的.
① 利用上述結(jié)論解決問題:如圖2,中,都是等邊三角形,求四邊形的面積;
② 圖3中, ∽,,仿照上述結(jié)論,推廣出符合圖3的結(jié)論.(寫出結(jié)論即可)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com