在[-2,2]上是減函數(shù).則-2時(shí), 查看更多

 

題目列表(包括答案和解析)

如果函數(shù)f(x)在區(qū)間D上有定義,且對(duì)任意x1,x2∈D,x1≠x2,都有f(
x1+x2
2
)<
f(x1)+f(x2)
2
,則稱(chēng)函數(shù)f(x)在區(qū)間D上的“凹函數(shù)”.
(Ⅰ)已知f(x)=ln(1+ex)-x(x∈R),判斷f(x)是否是“凹函數(shù)”,若是,請(qǐng)給出證明;若不是,請(qǐng)說(shuō)明理由;
(Ⅱ)已知f(x)=ln(1+ex)-x是定義域在R上的減函數(shù),且A、B、C是其圖象上三個(gè)不同的點(diǎn),求證:△ABC是鈍角三角形.

查看答案和解析>>

已知函數(shù)y=f(x)是R上的偶函數(shù),對(duì)于x∈R都有f(x+6)=f(x)+f(3)成立,且f(-4)=-2,當(dāng)x1,x2∈[0,3],且x1≠x2時(shí),都有
f(x1)-f(x2)
x1-x2
>0.則給出下列命題:
(1)f(2008)=-2;
(2)函數(shù)y=f(x)圖象的一條對(duì)稱(chēng)由為x=-6; 
(3)函數(shù)y=f(x)在[-9,-6]上為減函數(shù);
(4)方程f(x)=0在[-9,9]上有4個(gè)根;
其中正確的命題個(gè)數(shù)為( 。

查看答案和解析>>

已知函數(shù)f(x)=ex+ax2,其中a為實(shí)常數(shù).
(1)若f(x)在區(qū)間(1,2)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=-2時(shí),求證:f(x)有3個(gè)零點(diǎn);
(3)設(shè)y=g(x)為f(x)在x0處的切線,若“?x≠x0,(f(x)-g(x))(x-x0)>0”,則稱(chēng)x0為f(x)的一個(gè)優(yōu)美點(diǎn),是否存在實(shí)數(shù)a,使得x0=2是f(x)的一個(gè)優(yōu)美點(diǎn)?說(shuō)明理由.(參考數(shù)據(jù):e≈2.718)

查看答案和解析>>

已知函數(shù)f(x)是區(qū)間D⊆[0,+∞)上的增函數(shù),若f(x)可表示為f(x)=f1(x)+f2(x),且滿足下列條件:①f1(x)是D上的增函數(shù);②f2(x)是D上的減函數(shù);③函數(shù)f2(x)的值域A⊆[0,+∞),則稱(chēng)函數(shù)f(x)是區(qū)間D上的“偏增函數(shù)”.
(1)(i) 問(wèn)函數(shù)y=sinx+cosx是否是區(qū)間(0,
π
4
)
上的“偏增函數(shù)”?并說(shuō)明理由;
(ii)證明函數(shù)y=sinx是區(qū)間(0,
π
4
)
上的“偏增函數(shù)”.
(2)證明:對(duì)任意的一次函數(shù)f(x)=kx+b(k>0),必存在一個(gè)區(qū)間D⊆[0,+∞),使f(x)為D上的“偏增函數(shù)”.

查看答案和解析>>

已知函數(shù)y=cos(2x+φ)(φ>0),則下列命題正確的是( 。

查看答案和解析>>


同步練習(xí)冊(cè)答案