題目列表(包括答案和解析)
已知基本不等式:≥(a、b都是正實數(shù),當且僅當a=b時等號成立)可以推廣到n個正實數(shù)的情況,即對于n個正實數(shù)a1,a2,a3,…,an,有≥(當且僅當a1=a2=a3=…=an時,取等號).
同理,當a、b都是正實數(shù)時,(a+b)(+)≥2ab·2·=4,可以推導出結(jié)論:對于n個正實數(shù)a1,a2,a3,…,an有(a1+a2+a3)(++)≥________;(a1+a2+a3+a4)(+++)≥________;(a1+a2+a3+…+an)(+++…)≥________;
如果對于n個同號實數(shù)a1,a2,a3,…,an(同正或者同負),那么,根據(jù)上述結(jié)論,(a1+a2+a3+…+an)(+++…)的取值范圍是________.
已知命題及其證明:
(1)當時,左邊=1,右邊=所以等式成立;
(2)假設(shè)時等式成立,即成立,
則當時,,所以時等式也成立。
由(1)(2)知,對任意的正整數(shù)n等式都成立。
經(jīng)判斷以上評述
A.命題、推理都正確 B命題不正確、推理正確
C.命題正確、推理不正確 D命題、推理都不正確
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),若對任意,,不等式 恒成立,求實數(shù)的取值范圍.
【解析】第一問利用的定義域是
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是
第二問中,若對任意不等式恒成立,問題等價于只需研究最值即可。
解: (I)的定義域是 ......1分
............. 2分
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是 ........4分
(II)若對任意不等式恒成立,
問題等價于, .........5分
由(I)可知,在上,x=1是函數(shù)極小值點,這個極小值是唯一的極值點,
故也是最小值點,所以; ............6分
當b<1時,;
當時,;
當b>2時,; ............8分
問題等價于 ........11分
解得b<1 或 或 即,所以實數(shù)b的取值范圍是
α |
β |
α |
β |
α |
β |
α |
β |
x |
y |
x+y |
A.過程全部正確 | B.驗證不正確 |
C.歸納假設(shè)不正確 | D.從到的推理不正確 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com