題目列表(包括答案和解析)
已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(I)求橢圓的方程;
(II)若過點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)< 時,求實(shí)數(shù)的取值范圍.
【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運(yùn)用。
第一問中,利用
第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的<不等式,表示得到t的范圍。
解:(1)由題意知
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
當(dāng)時單調(diào)遞減;當(dāng)時單調(diào)遞增,故當(dāng)時,取最小值
于是對一切恒成立,當(dāng)且僅當(dāng). 、
令則
當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.
故當(dāng)時,取最大值.因此,當(dāng)且僅當(dāng)時,①式成立.
綜上所述,的取值集合為.
(Ⅱ)由題意知,令則
令,則.當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增.故當(dāng),即
從而,又
所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使即成立.
【點(diǎn)評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進(jìn)行分析判斷.
C
[解析] 由題意知a·b=4(x-1)+2y=0,∴2x+y=2,∴9x+3y=32x+3y≥2=6,等號成立時,x=,y=2,故選C.
解析:由題意知
當(dāng)-2≤x≤1時,f(x)=x-2,
當(dāng)1<x≤2時,f(x)=x3-2,
又∵f(x)=x-2,f(x)=x3-2在定義域上都為增函數(shù),
∴f(x)的最大值為f(2)=23-2=6.
答案:C
已知函數(shù)的圖像上兩相鄰最高點(diǎn)的坐標(biāo)分別為和.(Ⅰ)求與的值;(Ⅱ)在中,分別是角的對邊,且求的取值范圍.
【解析】本試題主要考查了三角函數(shù)的圖像與性質(zhì)的綜合運(yùn)用。
第一問中,利用所以由題意知:,;第二問中,,即,又,
則,解得,
所以
結(jié)合正弦定理和三角函數(shù)值域得到。
解:(Ⅰ),
所以由題意知:,;
(Ⅱ),即,又,
則,解得,
所以
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912243024954937/SYS201207091224545151178994_ST.files/image021.png">,所以,所以
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com