22. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)

(1)證明:

(2)若數(shù)列的通項(xiàng)公式為,求數(shù)列 的前項(xiàng)和;w.w.w.k.s.5.u.c.o.m    

(3)設(shè)數(shù)列滿足:,設(shè),

若(2)中的滿足對任意不小于2的正整數(shù),恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點(diǎn)軸上,點(diǎn)軸的正半軸,點(diǎn)在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當(dāng)點(diǎn)軸上移動時,求動點(diǎn)的軌跡方程;

(Ⅱ)過的直線與軌跡交于、兩點(diǎn),又過、作軌跡的切線,當(dāng),求直線的方程.

查看答案和解析>>

(本小題滿分14分)設(shè)函數(shù)

 (1)求函數(shù)的單調(diào)區(qū)間;

 (2)若當(dāng)時,不等式恒成立,求實(shí)數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關(guān)于的方程在區(qū)間上恰好有兩個相異的實(shí)根,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時, 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,;

(3)是否存在實(shí)數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

(本小題滿分14分)

設(shè)數(shù)列的前項(xiàng)和為,對任意的正整數(shù),都有成立,記。

(I)求數(shù)列的通項(xiàng)公式;

(II)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對任意正整數(shù)都有

(III)設(shè)數(shù)列的前項(xiàng)和為。已知正實(shí)數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

1――12   A  B  B  B  B  C  D  D  C  A  C  B

 

13、1            14、e             15、      16、①②④     

17、解上是增函數(shù),

方程=x2 + (m ? 2 )x + 1 = 0的兩個根在0至3之間

<m≤0

依題意得:m的取值范圍是:<m≤-1或m>0

18、解:(1),

當(dāng)a=1時 解集為

當(dāng)a>1時,解集為,

當(dāng)0<a<1時,解集為;

(2)依題意知f(1)是f(x)的最小值,又f(1)不可能是端點(diǎn)值,則f(1)是f(x)的一個極小值,由,

19、解:(1)當(dāng)所以f(-x)=-(-x)2-(-x)+5=-x2+x+5,

 

所以f(x)=

(2)由題意,不妨設(shè)A點(diǎn)在第一象限,坐標(biāo)為(t,-t2-t+5)其中,,

則S(t)=S ABCD=2t(-t2-t+5)=-2t3-2t2+10t.,

(舍去),t2=1.

當(dāng),所以S(t)在上單調(diào)遞增,在上單調(diào)遞減,

所以當(dāng)t=1時,ABCD的面積取得極大值也是S(t)在上的最大值。

從而當(dāng)t=1時,矩形ABCD的面積取得最大值6.

20、解:

21、解:,

,要使在其定義域內(nèi)為單調(diào)函數(shù),只需內(nèi)滿足:恒成立.

① 當(dāng)時,,∵,∴,∴,

內(nèi)為單調(diào)遞減.  

② 當(dāng)時,,對稱軸為, ∴.

只需,即,

內(nèi)為單調(diào)遞增。

 ③當(dāng)時,,對稱軸為.

只需,即恒成立.

綜上可得,.     

22、解:(Ⅰ)

       

        同理,令

        ∴f(x)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

        由此可知

   (Ⅱ)由(I)可知當(dāng)時,有,

        即.

    .

  (Ⅲ) 設(shè)函數(shù)

       

        ∴函數(shù))上單調(diào)遞增,在上單調(diào)遞減.

        ∴的最小值為,即總有

        而

       

        即

        令

       

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步練習(xí)冊答案