(Ⅱ)若方程至少有兩個(gè)不相同的實(shí)數(shù)根.求取值的集合. 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)其中b>0,c∈R.當(dāng)且僅當(dāng)x=-2時(shí),函數(shù)f(x)取得最小值-2.
(1)求函數(shù)f(x)的表達(dá)式;
(2)若方程f(x)=x+a(a∈R)至少有兩個(gè)不相同的實(shí)數(shù)根,求a取值的集合.

查看答案和解析>>

設(shè)函數(shù)其中b>0,c∈R.當(dāng)且僅當(dāng)x=-2時(shí),函數(shù)f(x)取得最小值-2.
(1)求函數(shù)f(x)的表達(dá)式;
(2)若方程f(x)=x+a(a∈R)至少有兩個(gè)不相同的實(shí)數(shù)根,求a取值的集合.

查看答案和解析>>

設(shè)函數(shù)數(shù)學(xué)公式其中b>0,c∈R.當(dāng)且僅當(dāng)x=-2時(shí),函數(shù)f(x)取得最小值-2.
(1)求函數(shù)f(x)的表達(dá)式;
(2)若方程f(x)=x+a(a∈R)至少有兩個(gè)不相同的實(shí)數(shù)根,求a取值的集合.

查看答案和解析>>


(本小題滿分14分)
已知函數(shù),當(dāng)時(shí),取得極小值.
(1)求的值;
(2)設(shè)直線,曲線.若直線與曲線同時(shí)滿足下列兩個(gè)條件:
①直線與曲線相切且至少有兩個(gè)切點(diǎn);
②對(duì)任意都有.則稱直線為曲線的“上夾線”.
試證明:直線是曲線的“上夾線”.
(3)記,設(shè)是方程的實(shí)數(shù)根,若對(duì)于定義域中任意的、,當(dāng),且時(shí),問是否存在一個(gè)最小的正整數(shù),使得恒成立,若存在請(qǐng)求出的值;若不存在請(qǐng)說明理由.

查看答案和解析>>

 

(本小題滿分14分)

已知函數(shù),當(dāng)時(shí),取得極小值.

(1)求,的值;

(2)設(shè)直線,曲線.若直線與曲線同時(shí)滿足下列兩個(gè)條件:

①直線與曲線相切且至少有兩個(gè)切點(diǎn);

②對(duì)任意都有.則稱直線為曲線的“上夾線”.

試證明:直線是曲線的“上夾線”.

(3)記,設(shè)是方程的實(shí)數(shù)根,若對(duì)于定義域中任意的、,當(dāng),且時(shí),問是否存在一個(gè)最小的正整數(shù),使得恒成立,若存在請(qǐng)求出的值;若不存在請(qǐng)說明理由.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案