設向量=.=.x∈R.函數(shù)f(x)=?(+).的最大值與最小正周期, 查看更多

 

題目列表(包括答案和解析)

設向量=(sinx,cosx),=(cosx,cosx),x∈R,函數(shù)f(x)=·()。

(Ⅰ)求函數(shù)f(x)的最大值與最小正周期;w.w.w.zxxk.c.o.m    

(Ⅱ)求使不等式f(x)≥成立的x的取值的集合。

 

 

查看答案和解析>>

設向量=(sinx,cosx),=(cosx,cosx),x∈R,函數(shù)f(x)=?()。

(Ⅰ)求函數(shù)f(x)的最大值與最小正周期;w.w.w.k.s.5.u.c.o.m    

(Ⅱ)求使不等式f(x)≥成立的x的取值的集合。

查看答案和解析>>

已知向量=(1,1),向量與向量和夾角為,且·=-1.

(1)求向量

(2)設向量=(1,0),向量=(cosx,sinx),其中x∈R,若·=0,試求||的取值范圍.

查看答案和解析>>

已知向量m=(cosx,sinx),n=(cosx,cosx)(x∈R),設函數(shù)f(x)=m·n

(1)求 f(x)的解析式,并求最小正周期.

(2)若函數(shù) g(x)的圖像是由函數(shù) f(x)的圖像向右平移個單位得到的,求g(x)的最大值及使g(x)取得最大值時x的值.

 

查看答案和解析>>

已知向量m=(cosx,sinx),n=(cosx,cosx)(x∈R),設函數(shù)f(x)=m·n

(1)求 f(x)的解析式,并求最小正周期.

(2)若函數(shù) g(x)的圖像是由函數(shù) f(x)的圖像向右平移個單位得到的,求g(x)的最大值及使g(x)取得最大值時x的值.

 

查看答案和解析>>

一:選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

D

B

B

B

B

D

B

D

C

C

A

 二、填空題:

13、0

14、

15、

16、①②

三、解答題:

17、(Ⅰ)∵

        

 

 

 

的最大值為,最小正周期是。…………………6分 

注:得出表達式的簡化形式得4分,最大值、周期各得1分。

(Ⅱ)由(Ⅰ)知

成立的的取值集合是………10分

注:正確寫出正弦的單調(diào)增區(qū)間2分,答案正確2分。

18、解:(Ⅰ),      

 ,

隨機變量的分布列為

0

1

2

3

P

數(shù)學期望………………………………………8分

注:每個概率算對得1分,分布列2分,期望2分。

   (II)所求的概率…………12分

注:知道概率加法公式得2分,結果正確得2分。

19、(本題滿分12分)

證明:(1)在直三棱柱,

∵底面三邊長,,

,              --------------------------------1分

又直三棱柱中  , 

      

       ---------------------------------3分

;                 ---------------------------------4分

(2)設的交點為,連結,---------------------5分

∵D是AB的中點,E是BC1的中點,

,                    ----------------------------7分

,,

.              ----------------------------8分

(3)過點C作CF⊥AB于F,連接C1F         

由已知C1C垂直平面ABC,則∠C1FC為二面角的平面角 ----------9分

在Rt△ABC中,,,,則           ----------10分

                                  ----------11分

∴二面角的正切值為                              ---------- 12分

(另:可以建立空間直角坐標系用向量方法完成,酌情給分,過程略)

20、解(1)

增函數(shù),(0,2)為減函數(shù)

      ………………………………………………2分

       (2), …………………         4分

                            5分

       ……………………7分

   (3)

      

       ,

       ……………………………………………………………………12分

21、 解:(1)f(x)對任意

                             2分

        令

                                       4分

   (2)解:數(shù)列{an}是等差數(shù)列    f(x)對任意x∈R都有

        則令                        5分

       ∴{a­­n}是等差數(shù)列                                              8分

   (3)解:由(2)有                         9分

       

∴Tn≤Sn                  該題也可用數(shù)學歸納法做。              12分

22、解:(1)∵

∴線段NP是AM的垂直平分線,                                      2分

                                   3分

                                            

∴點N的軌跡是以點C、A為焦點的橢圓;                             4分

∴點N的軌跡E的方程是                                  5分

(2)當直線的斜率不存在時,,,∴=;         6分

當直線的斜率存在時,設其方程為,

,△,              7分

設G(x1,y1),H(x2,y2)

,,∵,∴   8分

,,                             9分

,,,                  10分

 ,

∵點在點、之間  ,   ∴<1                                   11分

的取值范圍是[)。


同步練習冊答案