如圖.中心在原點(diǎn)的橢圓的一個(gè)焦點(diǎn)為.一條準(zhǔn)線為. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,F(xiàn)1,F(xiàn)2分別是橢圓C的左、右焦點(diǎn),M是橢圓短軸的一個(gè)端點(diǎn),過(guò)F1的直線l與橢圓交于A,B兩點(diǎn),△MF1F2的面積為4,△ABF2的周長(zhǎng)為8
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點(diǎn)Q的坐標(biāo)為(1,0),是否存在橢圓上的點(diǎn)P及以Q為圓心的一個(gè)圓,使得該圓與直線PF1,PF2都相切,如存在,求出P點(diǎn)坐標(biāo)及圓的方程,如不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

如圖,橢圓的中心在原點(diǎn),F(xiàn)為橢圓的左焦點(diǎn),B為橢圓的一個(gè)頂點(diǎn),過(guò)點(diǎn)B作與FB垂直的直線BP交x軸于P點(diǎn),且橢圓的長(zhǎng)半軸長(zhǎng)a和短半軸長(zhǎng)b是關(guān)于x的方程3x2-3
3
cx+2c2=0
(其中c為半焦距)的兩個(gè)根.
(I)求橢圓的離心率;
(Ⅱ)經(jīng)過(guò)F、B、P三點(diǎn)的圓與直線x+
3
y-
3
=0
相切,試求橢圓的方程.

查看答案和解析>>

如圖,橢圓G的中心在坐標(biāo)原點(diǎn),其中一個(gè)焦點(diǎn)為圓F:x2+y2-2x=0的圓心,右頂點(diǎn)是圓F與x軸的一個(gè)交點(diǎn).已知橢圓G與直線l:x-my-1=0相交于A、B兩點(diǎn).
(I)求橢圓的方程;
(Ⅱ)求△AOB面積的最大值.

查看答案和解析>>

如圖,橢圓G的中心在坐標(biāo)原點(diǎn),其中一個(gè)焦點(diǎn)為圓F:x2+y2-2x=0的圓心,右頂點(diǎn)是圓F與x軸的一個(gè)交點(diǎn).已知橢圓G與直線l:x-my-1=0相交于A、B兩點(diǎn).
(I)求橢圓的方程;
(Ⅱ)求△AOB面積為
3
3
5
時(shí),求直線l的方程.

查看答案和解析>>

如圖,橢圓的中心在坐標(biāo)原點(diǎn),F(xiàn)為左焦點(diǎn),A、B分別為長(zhǎng)軸和短軸上的一個(gè)頂點(diǎn),當(dāng)FB⊥AB時(shí),此類橢圓稱為“優(yōu)美橢圓”;類比“優(yōu)美橢圓”,可推出“優(yōu)美雙曲線”的離心率為
1+
5
2
1+
5
2

查看答案和解析>>

一、選擇題:

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

D

A

C

D

C

C

A

D

B

D

C

二、填空題(本大題共4小題,每小題4分,共16分)

13、;   14、;   15、32;     16、2

三、解答題:(本大題共6小題,共74分,)

17、解:(I)

                

                 ……………………………………………………4分

    ………………………………………………………………6分

   (II)由余弦定理

   

    ……………………………………………………………………9分

    而

    函數(shù)

    當(dāng)………………………………………12分

18、解:由上表可求出10次記錄下的有記號(hào)的紅鯽魚與中國(guó)金魚數(shù)目的平均數(shù)均為20,故可認(rèn)為池塘中的紅鯽魚與中國(guó)金魚的數(shù)目相同,設(shè)池塘中兩種魚的總數(shù)是,則有

,   即   ,        ------------4分

                    

所以,可估計(jì)水庫(kù)中的紅鯽魚與中國(guó)金魚的數(shù)量均為25000.    ------------6分

(Ⅱ)顯然,,                                 -----------9分

其分布列為

0

1

2

3

4

5

---------11分

數(shù)學(xué)期望.                                  -----------12分

      <label id="m8c3v"><progress id="m8c3v"></progress></label>
    • <li id="m8c3v"></li>

      ∵DE⊥EB,∴四邊形CDEF是矩形,

      ∵CD=1,∴EF=1。

      ∵四邊形ABCD是等腰梯形,AB=3。

      ∴AE=BF=1。

      ∵∠BAD=45°,∴DE=CF=1。

      連結(jié)CE,則CE=CB=

      ∵EB=2,∴∠BCE=90°。

      則BC⊥CE。                                                 …………3分

      在圖2中,∵AE⊥EB,AE⊥ED,EB∩ED=E,

      ∴AE⊥平面BCDE。

      ∵BC平面BCDE,∴AE⊥BC。                                 …………4分

      ∵AE∩CE=E,∴BC⊥平面AEC。                                …………5分

         (II)∵AE⊥平面BCDE,CF平面BCDE。

      ∴AE⊥CF。

      ∴CF⊥平面ABE。

      過(guò)C作CG⊥AB,連結(jié)FG,則∠CGF就是二面角C―AB―E的平面角。……6分

      又CF=1,AE=1,CE=BC=。

      ∴AC=

      在Rt△ACB中,AB=

      又AC?BC=AB?CG,∴CG=     ∴FG=   

      ∴二面角C―AB―E的正切值為                             …………8分

         (III)用反證法。

      假設(shè)EM∥平面ACD。                                         

      ∵EB∥CD,CD平面ACD,EB平面ACD,

      ∴EB∥平面ACD!逧B∩EM=E,∴面AEB∥面ACD                  …………10分

      而A∈平面AEB,A∈平面ACD,

      與平面AEB//平面ACD矛盾。

      ∵假設(shè)不成立。

          ∴EM與平面ACD不平行。………………………………12分

      20、(I)解:由得,

       ,,

      ,  

      為等比數(shù)列   ∴=                             3分                                                 

      (II)證明:因?yàn)榉匠?sub>的兩根為3、7,

      由題意知, 即,∴

      ∴等差數(shù)列的公差

                              6分

      要證,只要證明, 即

      下面用數(shù)學(xué)歸納法證明成立

      (i)當(dāng),2,3時(shí),不等式顯然成立,

      (ii)假設(shè)當(dāng))時(shí),不等式成立,即

      當(dāng)+1時(shí),

      ,此時(shí)不等式也成立.

      由(i)(ii)知,對(duì)任意,成立.

      所以,對(duì)任意,.                              9分

      (III)證明:由(II)已證成立,兩邊取以3為底的對(duì)數(shù)得,

      ,  ∴ w.w.w.k.s.5 u.c.o.m             12分

      21、解:(I)設(shè)橢圓方程為,         1分

      則由題意有,,                       2分

      因此,,                        3分

      所以橢圓的方程為。                          4分

      (II)∵ 斜率存在,不妨設(shè),求出.   5分

      直線 方程為,直線 方程  …………6分

        分別與橢圓方程聯(lián)立,可解出   7分

      ∴ .∴ 為定值.       8分

      (Ⅲ)設(shè)直線AB方程為,與聯(lián)立,消去

      .                                  9分

      >0得-4< <4,且 ≠0,點(diǎn) 的距離為.………… 10分

                     11分

          設(shè)△的面積為S. ∴ 

      當(dāng)時(shí),得.                       12分

      22、(I)解:當(dāng)

      此時(shí), 的極小值為,無(wú)極大值                        …………4分

      (II)解:

                 …………8分

      (III)由(I)知:上為增函數(shù),

       

       


      同步練習(xí)冊(cè)答案