10.已知是定義在R上的奇函數(shù).且為偶函數(shù).對(duì)于函數(shù)有下列幾種描述 查看更多

 

題目列表(包括答案和解析)

已知是定義在R上的奇函數(shù),且為偶函數(shù),對(duì)于函數(shù)有下列幾種描述

       ①是周期函數(shù)      ②是它的一條對(duì)稱軸

       ③是它圖象的一個(gè)對(duì)稱中心  ④當(dāng)時(shí),它一定取最大值

    其中描述正確的是                            (    )

       A.①② B.①③ C.②④ D.②③

查看答案和解析>>

已知是定義在R上的奇函數(shù),且為偶函數(shù),對(duì)于函數(shù)有下列幾種描述
是周期函數(shù)                          ②是它的一條對(duì)稱軸
是它圖象的一個(gè)對(duì)稱中心        ④當(dāng)時(shí),它一定取最大值
其中描述正確的是                                                                                          (   )
A.①②B.①③C.②④D.②③

查看答案和解析>>

6、已知f(x)是定義在R上的不恒為零的函數(shù),且對(duì)于任意的a,b∈R,f(x)滿足關(guān)系式:f(a•b)=bf(a)+af(b),則f(x)的奇偶性為( 。

查看答案和解析>>

已知f(x)是定義在R上的不恒為零的函數(shù),且對(duì)于任意的a,b∈R都滿足:f(ab)=af(b)+bf(a).
(1)求f(0)及f(1)的值;
(2)判斷的奇偶性,并證明你的結(jié)論;
(3)若f(2)=2,un=
f(2n)2n
(n∈N*)
,求證數(shù)列{un}是等差數(shù)列,并求{un}的通項(xiàng)公式.

查看答案和解析>>

已知y=f(x)是定義在R上的奇函數(shù),且y=f(x+
π
2
)
為偶函數(shù),對(duì)于函數(shù)y=f(x)有下列幾種描述:
①y=f(x)是周期函數(shù)②x=π是它的一條對(duì)稱軸;③(-π,0)是它圖象的一個(gè)對(duì)稱中心;
④當(dāng)x=
π
2
時(shí),它一定取最大值;其中描述正確的是
 

查看答案和解析>>

一、       選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

A

C

C

C

D

B

B

C

C

B

二、填空題

題號(hào)

     11

    12

   13  

  14(1)

  14(2)

答案

   6

  2

 

  3

三、解答題:本大題共6小題,共80分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.

15.解:(Ⅰ),不等式的解為,

,

(Ⅱ)由(Ⅰ)可知,

16、解:

 

   (I)函數(shù)的最小正周期是        ……………………………7分

  。↖I)∴   ∴   

     ∴               

    所以的值域?yàn)椋?sub>                 …………12分

17、解:(1)因?yàn)?sub>,成等差數(shù)列,所以2f(2)=f(1)+f(4),

即:2log2(2+m)=log2(1+m)+log2(4+m),即log2(2+m)2=log2(1+m)(4+m),得

(2+m)2=(1+m)(4+m),得m=0.

(2) 若、是兩兩不相等的正數(shù),且、、依次成等差數(shù)列,設(shè)a=b-d,c=b+d,(d不為0);

f(a)+f(c)-2f(b)=log2(a+m)+log2(c+m)-2log2(b+m)=log2

因?yàn)椋╝+m)(c+m)-(b-m)2=ac+(a+c)m+m2-(b+m)2=b2-d2+2bm+m2-(b+m)2=-d2<0

所以:0<(a+m)(c+m)<(b+m)2,得0<<1,得log2<0,

所以:f(a)+f(c)<2f(b).

18. 解:(Ⅰ)的定義域關(guān)于原點(diǎn)對(duì)稱

為奇函數(shù),則  ∴a=0

(Ⅱ)∴在上單調(diào)遞增

上恒大于0只要大于0即可,∴

上恒大于0,a的取值范圍為

19. 解:(Ⅰ)設(shè)的公差為,則:,

,,∴,∴. ………………………2分

.  …………………………………………4分

(Ⅱ)當(dāng)時(shí),,由,得.     …………………5分

當(dāng)時(shí),,

,即.  …………………………7分

  ∴.   ……………………………………………………………8分

是以為首項(xiàng),為公比的等比數(shù)列. …………………………………9分

(Ⅲ)由(2)可知:.   ……………………………10分

. …………………………………11分

.    ………………………………………13分

.  …………………………………………………14分

20.解:(Ⅰ)設(shè)函數(shù)

   (Ⅱ)由(Ⅰ)可知

可知使恒成立的常數(shù)k=8.

(Ⅲ)由(Ⅱ)知 

可知數(shù)列為首項(xiàng),8為公比的等比數(shù)列

即以為首項(xiàng),8為公比的等比數(shù)列. 則 

 


同步練習(xí)冊(cè)答案