A. B. C. D. 查看更多

 

題目列表(包括答案和解析)

A.        B.     C.       D.不存在

查看答案和解析>>

     A          B           C            D

查看答案和解析>>

 (     )

    A.      B.      C.            D.

查看答案和解析>>

                                                           (    )

A.             B.               C.             D.

 

查看答案和解析>>

=(      )

A.              B.             C.             D.

 

查看答案和解析>>

 

一、選擇題

1―5BABAB  6―10DBABA  11―12CC

<td id="s9qvj"><form id="s9qvj"></form></td><small id="s9qvj"><progress id="s9qvj"><em id="s9qvj"></em></progress></small>

      • <p id="s9qvj"></p>
        <input id="s9qvj"><progress id="s9qvj"></progress></input>

      • 20081006

        13.      14.

        15.        16. f()<f(1)< f(

        三、解答題

        17.解:(Ⅰ),    

         

        =是奇函數(shù),,

           (Ⅱ)由(Ⅰ)得,

        從而上增函數(shù),

        上減函數(shù),

        所以時取得極大值,極大值為,時取得極小值,極小值為

        18.解:(Ⅰ)設(shè)A隊得分為2分的事件為,

        對陣隊員

        隊隊員勝

        隊隊員負(fù)

         

         

         

         

         

         

         

         

         

         

         

         

           

         

        0

        1

        2

        3

        的分布列為:                          

                                                                  ………… 8分

        于是 , …………9分

        ,    ∴     ………… 11分

        由于, 故B隊比A隊實力較強(qiáng).    …………12分

        19.解:(1)由   ∴……………2分

        由已知得,  

        .  從而.……………4分

           (2) 由(1)知,,

        值域為.…………6分

        ∴由已知得:  于是……………8分

        20.解:(Ⅰ)

        化為,    或 

        解得,原不等式的解集為

           (Ⅱ),

        ①當(dāng)時,在區(qū)間[]上單調(diào)遞增,從而  

        ②當(dāng)時,對稱軸的方程為,依題意得  解得

        綜合①②得

        21.解:(Ⅰ)

        =0 得

        解不等式,得

        解不等式,

        從而的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是

           (Ⅱ)將兩邊取對數(shù)得,

        因為,從而

        由(Ⅰ)得當(dāng),

        要使對任意成立,當(dāng)且僅當(dāng),得

         

        22.(Ⅰ)解:是二次函數(shù),且的解集是

        *可設(shè)

        在區(qū)間上的最大值是

        由已知,得

           (Ⅱ)方程等價于方程

        設(shè),

        當(dāng)時,是減函數(shù);

        當(dāng)時,是增函數(shù).

        ,

        *方程在區(qū)間內(nèi)分別有惟一實數(shù)根,

        而在區(qū)間內(nèi)沒有實數(shù)根.

        所以存在惟一的自然數(shù),

        使得方程在區(qū)間內(nèi)有且只有兩個不同的實數(shù)根.

         

         

         

         

         

        www.ks5u.com

         

         

         


        同步練習(xí)冊答案
        <span id="s9qvj"><dfn id="s9qvj"></dfn></span>
          <source id="s9qvj"><del id="s9qvj"></del></source>