13. 查看更多

 

題目列表(包括答案和解析)

1、集合A={-1,0,1},B={-2,-1,0},則A∪B=
{-2,-1,0,1}

查看答案和解析>>

2、命題“存在x∈R,使得x2+2x+5=0”的否定是
對(duì)任意x∈R,都有x2+2x+5≠0

查看答案和解析>>

3、在等差數(shù)列{an}中,a2+a5=19,S5=40,則a10
29

查看答案和解析>>

5、函數(shù)y=a2-x+1(a>0,a≠1)的圖象恒過(guò)定點(diǎn)P,則點(diǎn)P的坐標(biāo)為
(2,2)

查看答案和解析>>

 

一、選擇題

1―5BABAB  6―10DBABA  11―12CC

      <big id="0ms6v"></big>
      • 20081006

        13.      14.

        15.        16. f()<f(1)< f(

        三、解答題

        17.解:(Ⅰ),    

         

        =是奇函數(shù),,

           (Ⅱ)由(Ⅰ)得,

        從而上增函數(shù),

        上減函數(shù),

        所以時(shí)取得極大值,極大值為,時(shí)取得極小值,極小值為

        18.解:(Ⅰ)設(shè)A隊(duì)得分為2分的事件為,

        對(duì)陣隊(duì)員

        隊(duì)隊(duì)員勝

        隊(duì)隊(duì)員負(fù)

        對(duì)

        對(duì)

        對(duì)

         

         

         

         

         

         

         

         

         

         

         

         

           

         

        0

        1

        2

        3

        的分布列為:                          

                                                                  ………… 8分

        于是 , …………9分

        ,    ∴     ………… 11分

        由于, 故B隊(duì)比A隊(duì)實(shí)力較強(qiáng).    …………12分

        19.解:(1)由   ∴……………2分

        由已知得,  

        .  從而.……………4分

           (2) 由(1)知,,

        值域?yàn)?sub>.…………6分

        ∴由已知得:  于是……………8分

        20.解:(Ⅰ),

        化為,    或 

        解得,原不等式的解集為

           (Ⅱ)

        ①當(dāng)時(shí),在區(qū)間[]上單調(diào)遞增,從而  

        ②當(dāng)時(shí),對(duì)稱軸的方程為,依題意得  解得

        綜合①②得

        21.解:(Ⅰ),

        =0 得

        解不等式,得,

        解不等式,

        從而的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是

           (Ⅱ)將兩邊取對(duì)數(shù)得,

        因?yàn)?sub>,從而

        由(Ⅰ)得當(dāng)時(shí)

        要使對(duì)任意成立,當(dāng)且僅當(dāng),得

         

        22.(Ⅰ)解:是二次函數(shù),且的解集是,

        *可設(shè)

        在區(qū)間上的最大值是

        由已知,得

           (Ⅱ)方程等價(jià)于方程

        設(shè)

        當(dāng)時(shí),是減函數(shù);

        當(dāng)時(shí),是增函數(shù).

        ,

        *方程在區(qū)間內(nèi)分別有惟一實(shí)數(shù)根,

        而在區(qū)間內(nèi)沒(méi)有實(shí)數(shù)根.

        所以存在惟一的自然數(shù),

        使得方程在區(qū)間內(nèi)有且只有兩個(gè)不同的實(shí)數(shù)根.

         

         

         

         

         

        www.ks5u.com

         

         

         


        同步練習(xí)冊(cè)答案