平面,由得. 查看更多

 

題目列表(包括答案和解析)

平面直角坐標系xOy中,動點P從點P0(4,0)出發(fā),運動過程中,到定點F(-2,0)的距離與到定直線l:x=-8的距離之比為常數(shù).
①求點P的軌跡方程;
②在軌跡上是否存在點M(s,t),使得以M為圓心且經(jīng)過定點F(-2,0)的圓與直線x=8相交于兩點A、B?若存在,求s的取值范圍;若不存在,說明理由.

查看答案和解析>>

平面直角坐標系中,O為坐標原點,已知兩點M(1,-3)、N(5,1),若點C滿足
OC
=t
OM
+(1-t)
ON
(t∈R),點C的軌跡與拋物線:y2=4x交于A、B兩點.
(Ⅰ)求證:
OA
OB
;
(Ⅱ)在x軸上是否存在一點P(m,0)(m∈R),使得過P點的直線交拋物線于D、E兩點,并以該弦DE為直徑的圓都過原點.若存在,請求出m的值及圓心的軌跡方程;若不存在,請說明理由.

查看答案和解析>>

5、平面內(nèi)平行于同一條直線的兩條直線平行,由此類比思維,我們可以得到(  )

查看答案和解析>>

平面內(nèi)與兩定點A1(-a,0),A2(a,0)(a>0)連線的斜率之積等于非零常數(shù)m的點的軌跡,加上A1、A2兩點所成的曲線C可以是圓、橢圓成雙曲線.
(Ⅰ)求曲線C的方程,并討論C的形狀與m值的關系;
(Ⅱ)當m=-1時,對應的曲線為C1;對給定的m∈(-1,0)∪(0,+∞),對應的曲線為C2,設F1、F2是C2的兩個焦點.試問:在C1上,是否存在點N,使得△F1NF2的面積S=|m|a2.若存在,求tanF1NF2的值;若不存在,請說明理由.

查看答案和解析>>

平面直角坐標系xoy中,直線x-y+1=0截以原點O為圓心的圓所得的弦長為
6

(1)求圓O的方程;
(2)若直線l與圓O切于第一象限,且與坐標軸交于D,E,當DE長最小時,求直線l的方程;
(3)問是否存在斜率為2的直線m,使m被圓O截得的弦為AB,以AB為直徑的圓經(jīng)過原點.若存在,寫出直線m的方程;若不存在,說明理由.

查看答案和解析>>


同步練習冊答案