題目列表(包括答案和解析)
材料:采訪零向量
W:你好!零向量.我是《數(shù)學(xué)天地》的一名記者,為了讓在校的高中生更好了解你,能不能對(duì)你進(jìn)行一次采訪呢?
零向量:當(dāng)然可以,我們向量王國(guó)隨時(shí)恭候大家的光臨,很樂意接受你的采訪,讓高中生朋友更加了解我,更好地為他們服務(wù).
W:好的,那就開始吧!你的名字有什么特殊的含義嗎?
零向量:零向量就是長(zhǎng)度為零的向量,它與數(shù)字0有著密切的聯(lián)系,所以用0來表示我.
W:你與其他向量有什么共同之處呢?
零向量:既然我是向量王國(guó)的一個(gè)成員,就具有向量的基本性質(zhì),如既有大小又有方向,在進(jìn)行加、減法運(yùn)算時(shí)滿足交換律和結(jié)合律,還定義了與實(shí)數(shù)的積.
W:你有哪些值得驕傲的特殊榮耀呢?
零向量:首先,我的方向是不定的,可以與任意的向量平行.其次,我還有其他一些向量所沒有的特殊待遇:如我的相反向量仍是零向量;在向量的線性運(yùn)算中,我與實(shí)數(shù)0很有相似之處.
W:你有如此多的榮耀,那么是否還有煩惱之事呢?
零向量:當(dāng)然有了,在向量王國(guó)還有許多“權(quán)利和義務(wù)”卻大有把我排斥在外之意,如平行向量的定義,向量共線定理,兩向量夾角的定義都對(duì)我進(jìn)行了限制.所有這些確實(shí)給一些高中生帶來了很多苦惱,在此我向大家真誠(chéng)地說一聲:對(duì)不起,這不是我的錯(cuò).但我還是很高興有這次機(jī)會(huì)與大家見面.
W:OK!采訪就到這里吧,非常感謝你的合作,再見!
零向量:Bye!
閱讀上面的材料回答下面問題.
應(yīng)用零向量時(shí)應(yīng)注意哪些問題?
蜜蜂蜂房是嚴(yán)格的六角柱狀體,它的一端是平整的六角形開口,另一端是封閉的六角菱錐形的底,由三個(gè)相同的菱形組成.組成底盤的菱形的鈍角為109度28分,所有的銳角為70度32分,這樣既堅(jiān)固又省料.蜂房的巢壁厚0.073毫米,誤差極。
丹頂鶴總是成群結(jié)隊(duì)遷飛,而且排成“人”字形.“人”字形的角度是110度.更精確地計(jì)算還表明“人”字形夾角的一半——即每邊與鶴群前進(jìn)方向的夾角為54度44分8秒!而金剛石結(jié)晶體的角度正好也是54度44分8秒!是巧合還是某種大自然的“默契”?
蜘蛛結(jié)的“八卦”形網(wǎng),是既復(fù)雜又美麗的八角形幾何圖案,人們即使用直尺的圓規(guī)也很難畫出像蜘蛛網(wǎng)那樣勻稱的圖案.
冬天,貓睡覺時(shí)總是把身體抱成一個(gè)球形,這其間也有數(shù)學(xué),因?yàn)榍蛐问股眢w的表面積最小,從而散發(fā)的熱量也最少.
真正的數(shù)學(xué)“天才”是珊瑚蟲.珊瑚蟲在自己的身上記下“日歷”,它們每年在自己的體壁上“刻畫”出365條斑紋,顯然是一天“畫”一條.奇怪的是,古生物學(xué)家發(fā)現(xiàn)3億5千萬年前的珊瑚蟲每年“畫”出400幅“水彩畫”.天文學(xué)家告訴我們,當(dāng)時(shí)地球一天僅21.9小時(shí),一年不是365天,而是400天.
1.同學(xué)們,大自然中有許多有關(guān)數(shù)學(xué)的奧妙,許多現(xiàn)象有意無意地應(yīng)用著數(shù)學(xué),對(duì)于這些現(xiàn)象你有什么看法嗎?請(qǐng)你談?wù)勀銓?duì)大自然中的數(shù)學(xué)現(xiàn)象的認(rèn)識(shí).
2.把你發(fā)現(xiàn)的大自然中的數(shù)學(xué)問題告訴你的同學(xué)和老師,讓他們也分享一下你認(rèn)識(shí)大自然的樂趣.
如圖所示的長(zhǎng)方體中,底面是邊長(zhǎng)為的正方形,為與的交點(diǎn),,是線段的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)求二面角的大。
【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運(yùn)用。中利用,又平面,平面,∴平面由,,又,∴平面. 可得證明
(3)因?yàn)椤?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192139454539928006_ST.files/image021.png">為面的法向量.∵,,
∴為平面的法向量.∴利用法向量的夾角公式,,
∴與的夾角為,即二面角的大小為.
方法一:解:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系.連接,則點(diǎn)、,
∴,又點(diǎn),,∴
∴,且與不共線,∴.
又平面,平面,∴平面.…………………4分
(Ⅱ)∵,
∴,,即,,
又,∴平面. ………8分
(Ⅲ)∵,,∴平面,
∴為面的法向量.∵,,
∴為平面的法向量.∴,
∴與的夾角為,即二面角的大小為
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長(zhǎng).
【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).
(1)證明:易得,于是,所以
(2) ,設(shè)平面PCD的法向量,
則,即.不防設(shè),可得.可取平面PAC的法向量于是從而.
所以二面角A-PC-D的正弦值為.
(3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.
由,故
所以,,解得,即.
解法二:(1)證明:由,可得,又由,,故.又,所以.
(2)如圖,作于點(diǎn)H,連接DH.由,,可得.
因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,
因此所以二面角的正弦值為.
(3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,故
在中,由,,
可得.由余弦定理,,
所以.
如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分別是AC,AB上的點(diǎn),且DE∥BC,DE=2,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖2.
(1) 求證:A1C⊥平面BCDE;
(2) 若M是A1D的中點(diǎn),求CM與平面A1BE所成角的大;
(3) 線段BC上是否存在點(diǎn)P,使平面A1DP與平面A1BE垂直?說明理由
【解析】(1)∵DE∥BC∴∴∴∴又∵∴
(2)如圖,以C為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系C-xyz,
則
設(shè)平面的法向量為,則,又,,所以,令,則,所以,
設(shè)CM與平面所成角為。因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244479838554563_ST.files/image021.png">,
所以
所以CM與平面所成角為。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com