=ak=ak?(k+1). 查看更多

 

題目列表(包括答案和解析)

閱讀下面所給材料:已知數(shù)列{an},a1=2,an=3an-1+2,求數(shù)列的通項(xiàng)an
解:令an=an-1=x,則有x=3x+2,所以x=-1,故原遞推式an=3an-1+2可轉(zhuǎn)化為:
an+1=3(an-1+1),因此數(shù)列{an+1}是首項(xiàng)為a1+1,公比為3的等比數(shù)列.
根據(jù)上述材料所給出提示,解答下列問(wèn)題:
已知數(shù)列{an},a1=1,an=3an-1+4,
(1)求數(shù)列的通項(xiàng)an;并用解析幾何中的有關(guān)思想方法來(lái)解釋其原理;
(2)若記Sn=
n
k=1
1
lg(ak+2)lg(ak+1+2)
,求
lim
n→∞
Sn;
(3)若數(shù)列{bn}滿足:b1=10,bn+1=100bn3,利用所學(xué)過(guò)的知識(shí),把問(wèn)題轉(zhuǎn)化為可以用閱讀材料的提示,求出解數(shù)列{bn}的通項(xiàng)公式bn

查看答案和解析>>

(2013•奉賢區(qū)一模)定義數(shù)列An:a1,a2,…,an,(例如n=3時(shí),A3:a1,a2,a3)滿足a1=an=0,且當(dāng)2≤k≤n(k∈N*)時(shí),(ak-ak-1)2=1.令S(An)=a1+a2+…+an
(1)寫(xiě)出數(shù)列A5的所有可能的情況;
(2)設(shè)ak-ak-1=ck-1,求S(Am)(用m,c1,…,cm的代數(shù)式來(lái)表示);
(3)求S(Am)的最大值.

查看答案和解析>>

(2009•西城區(qū)一模)已知函數(shù)f(x)由下表給出:
x 0 1 2 3 4
f(x) a0 a1 a2 a3 a3
其中ak=(k=0,1,2,3,4)等于在a0,a1,a2,a3中k所出現(xiàn)的次數(shù).
則a4=
0
0
; a0+a1+a2+a3=
4
4

查看答案和解析>>

已知1+2+3+…+n-
1
2
n2+
1
2
n,12+22+32+…+n2=
1
3
n3+
1
2
n2+
1
6
n,13+23+33+…+n3=
1
4
n4+
1
2
n3+
1
4
n2
,14+24+34+…+n4=
1
5
n5+
1
2
n4+
1
3
n3-
1
30
n…,1k+2k+3k+…+nk=ak+1nk+1+aknk+ak-1nk-1+ak-2nk-2+…a1n+a0
可以猜想,當(dāng)k≥2(k∈N*)時(shí),ak+1=
1
k+1
ak=
1
2
,ak-1
=
6+
(k-2)(7-k)
2
6+
(k-2)(7-k)
2

查看答案和解析>>

已知集合A={x|x=a0+a1×3+a2×32+a3×33},其中ak∈{0,1,2}(k=0,1,2,3),且a3≠0,則A中所有元素之和等于(  )

A.3 240           B.3 120

C.2 997           D.2 889

 

查看答案和解析>>


同步練習(xí)冊(cè)答案