由f′(x)=0,得x=或x=-1. 5分 查看更多

 

題目列表(包括答案和解析)

函數(shù)f(x)=
0,(x>0)
-5,(x=0)
x2+2,(x<0)
,求f{f[f(3)]}的算法時,下列步驟正確的順序是
①③②
①③②

①由3>0,得f(3)=0
②由-5<0,得f(-5)=25+2=27,即f{f[f(3)]}=27
③由f(0)=-5,得f[f(3)]=f(0)=-5.

查看答案和解析>>

已知函數(shù)f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實數(shù)x只有一個.

(1)求函數(shù)f(x)的表達式;

(2)若數(shù)列{an}滿足a1,an+1=f(an),bn-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項公式;

(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).

【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

由f(x)=2x只有一解,即=2x,

也就是2ax2-2(1+b)x=0(a≠0)只有一解,

∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

(2)an+1=f(an)=(n∈N*),bn-1, ∴,

∴{bn}為等比數(shù)列,q=.又∵a1,∴b1-1=,

bn=b1qn-1n-1n(n∈N*).……………………………9分

(3)證明:∵anbn=an=1-an=1-,

∴a1b1+a2b2+…+anbn+…+<+…+

=1-<1(n∈N*).

 

查看答案和解析>>

函數(shù)f(x)=數(shù)學(xué)公式,求f{f[f(3)]}的算法時,下列步驟正確的順序是________.
①由3>0,得f(3)=0
②由-5<0,得f(-5)=25+2=27,即f{f[f(3)]}=27
③由f(0)=-5,得f[f(3)]=f(0)=-5.

查看答案和解析>>

關(guān)于函數(shù)f(x)=4sin(2x+
π
3
)(x∈R),有下列命題:
①由f (x1)=f (x2)=0可得x1-x2必是π的整數(shù)倍;
②若x1,x2∈(-
π
6
,
π
12
),且2f(x1)=f(x1+x2+
π
6
),則x1<x2;
③函數(shù)的圖象關(guān)于點(-
π
6
,0)對稱;
④函數(shù)y=f (-x)的單調(diào)遞增區(qū)間可由不等式2kπ-
π
2
≤-2x+
π
3
≤2kπ+
π
2
(k∈Z)求得.
正確命題的序號是
②③
②③

查看答案和解析>>

設(shè)函數(shù)y=f(x)為區(qū)間(0,1]上的圖象是連續(xù)不斷的一條曲線,且恒有0≤f(x)≤1,可以用隨機模擬方法計算由曲線y=f(x)及直線x=0,x=1,y=0所圍成部分的面積S,先產(chǎn)生兩組(每組N個),區(qū)間(0,1]上的均勻隨機數(shù)x1,x2,…,xn和y1,y2,…,yn,由此得到V個點(x,y)(i-1,2…,N).再數(shù)出其中滿足y1≤f(x)(i=1,2…,N)的點數(shù)N1,那么由隨機模擬方法可得S的近似值為
 

查看答案和解析>>


同步練習(xí)冊答案