題目列表(包括答案和解析)
已知函數(shù)在處取得極值2.
⑴ 求函數(shù)的解析式;
⑵ 若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
【解析】第一問中利用導(dǎo)數(shù)
又f(x)在x=1處取得極值2,所以,
所以
第二問中,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得
解:⑴ 求導(dǎo),又f(x)在x=1處取得極值2,所以,即,所以…………6分
⑵ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得, …………9分
當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞減,則有
得 …………12分
.綜上所述,當(dāng)時,f(x)在(m,2m+1)上單調(diào)遞增,當(dāng)時,f(x)在(m,2m+1)上單調(diào)遞減;則實(shí)數(shù)m的取值范圍是或
設(shè)函數(shù)f(x)=lnx,g(x)=ax+,函數(shù)f(x)的圖像與x軸的交點(diǎn)也在函數(shù)g(x)的圖像上,且在此點(diǎn)處f(x)與g(x)有公切線.[來源:學(xué)?。網(wǎng)]
(Ⅰ)求a、b的值;
(Ⅱ)設(shè)x>0,試比較f(x)與g(x)的大小.[來源:學(xué),科,網(wǎng)Z,X,X,K]
【解析】第一問解:因?yàn)?i>f(x)=lnx,g(x)=ax+
則其導(dǎo)數(shù)為
由題意得,
第二問,由(I)可知,令。
∵, …………8分
∴是(0,+∞)上的減函數(shù),而F(1)=0, …………9分
∴當(dāng)時,,有;當(dāng)時,,有;當(dāng)x=1時,,有
解:因?yàn)?i>f(x)=lnx,g(x)=ax+
則其導(dǎo)數(shù)為
由題意得,
(11)由(I)可知,令。
∵, …………8分
∴是(0,+∞)上的減函數(shù),而F(1)=0, …………9分
∴當(dāng)時,,有;當(dāng)時,,有;當(dāng)x=1時,,有
已知
(1)求函數(shù)在上的最小值
(2)對一切的恒成立,求實(shí)數(shù)a的取值范圍
(3)證明對一切,都有成立
【解析】第一問中利用
當(dāng)時,在單調(diào)遞減,在單調(diào)遞增,當(dāng),即時,,
第二問中,,則設(shè),
則,單調(diào)遞增,,,單調(diào)遞減,,因?yàn)閷σ磺?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131571401959588_ST.files/image005.png">,恒成立,
第三問中問題等價于證明,,
由(1)可知,的最小值為,當(dāng)且僅當(dāng)x=時取得
設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時取得.從而對一切,都有成立
解:(1)當(dāng)時,在單調(diào)遞減,在單調(diào)遞增,當(dāng),即時,,
…………4分
(2),則設(shè),
則,單調(diào)遞增,,,單調(diào)遞減,,因?yàn)閷σ磺?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131571401959588_ST.files/image005.png">,恒成立, …………9分
(3)問題等價于證明,,
由(1)可知,的最小值為,當(dāng)且僅當(dāng)x=時取得
設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時取得.從而對一切,都有成立
已知中心在原點(diǎn)O,焦點(diǎn)F1、F2在x軸上的橢圓E經(jīng)過點(diǎn)C(2,2),且拋物線的焦點(diǎn)為F1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點(diǎn),當(dāng)以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.
【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運(yùn)用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點(diǎn)坐標(biāo)得到,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120259226615718_ST.files/image003.png">,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到
,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。
解:(Ⅰ)設(shè)橢圓E的方程為
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以橢圓E的方程為…………………………4分
(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分
代入橢圓E方程,得…………………………6分
………………………7分
、………………8分
………………………9分
……………………………10分
當(dāng)m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,
圓P的方程為(x-2)2+(y-1)2=4;………………………………11分
同理,當(dāng)m=-3時,直線l方程為y=-x-3,
圓P的方程為(x+2)2+(y+1)2=4
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com