(II)設(shè)的取值范圍. 查看更多

 

題目列表(包括答案和解析)

設(shè)a是奇函數(shù)。

   (I)求b的取值范圍;

   (II)討論函數(shù)f(x)的單調(diào)性。

查看答案和解析>>

已知在區(qū)間上是增函數(shù)

(I)求實(shí)數(shù)的取值范圍;

(II)記實(shí)數(shù)的取值范圍為集合A,且設(shè)關(guān)于的方程的兩個非零實(shí)根為。

①求的最大值;

②試問:是否存在實(shí)數(shù)m,使得不等式恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

設(shè)函數(shù)

(I)解不等式

(II)若恒成立,求M的取值范圍。

查看答案和解析>>

設(shè)函數(shù)

   (I)若的極值點(diǎn),求實(shí)數(shù);

   (II)求實(shí)數(shù)的取值范圍,使得對任意的,恒有成立,注:為自然對數(shù)的底數(shù)。

查看答案和解析>>

,
(I)若時,函數(shù)在其定義域是增函數(shù),求b的取值范圍。
(II)在(I)的結(jié)論下,設(shè)函數(shù) ,求函數(shù)的最小值

查看答案和解析>>

 

一、選擇題(本大題12小題,每小題5分,共60分。在每小題經(jīng)出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。))

1―5DCBAC  6―10BCADB  11―12BB

二、填空題(本大題共4個小題,每小題5分,共20分。將符合題意的答案填在題后的橫線上)

13.2   14.70  15.  16.

三、解答題:本大題共6個小題,共70分。解答應(yīng)寫出文字說明,證明過程或演算步驟。

17.解:(I)…………4分

      

       …………6分

   (II)

      

               

       …………8分

      

      

       …………10分

18.解:(I)設(shè)通曉英語的有人,

       且…………1分

       則依題意有:

       …………3分

       所以,這組志愿者有人!4分

   (II)所有可能的選法有種…………5分

       A被選中的選法有種…………7分

       A被選中的概率為…………8分

   (III)用N表示事件“B,C不全被選中”,則表示事件“B,C全被選中”……10分

       則…………11分

       所以B和C不全被選中的概率為……12分

       說明:其他解法請酌情給分。

    <dfn id="jbts6"></dfn>

         (I),

             AD為PD在平面ABC內(nèi)的射影。

             又點(diǎn)E、F分別為AB、AC的中點(diǎn),

            

             在中,由于AB=AC,故

             ,平面PAD……4分

         (II)設(shè)EF與AD相交于點(diǎn)G,連接PG。

             平面PAD,dm PAD,交線為PG,

             過A做AO平面PEF,則O在PG上,

             所以線段AO的長為點(diǎn)A到平面PEF的距離

             在

            

             即點(diǎn)A到平面PEF的距離為…………8分

             說 明:該問還可以用等體積轉(zhuǎn)化法求解,請根據(jù)解答給分。

         (III)

             平面PAC。

             過A做,垂足為H,連接EH。

             則

             所以為二面角E―PF―A的一個平面角。

             在

            

             即二面角E―PF―A的正切值為

             …………12分

             解法二:

            

      AB、AC、AP兩兩垂直,建立如圖所示空間直角坐標(biāo)系,

             則A(0,0,0),E(2,0,0),D(2,2,0),F(xiàn)(0,2,0),P(0,0,2)……2分

      <u id="jbts6"><rt id="jbts6"></rt></u>

               且

              

              

               平面PAD

           (II)為平面PEF的一個法向量,

               則

               令…………6分

               故點(diǎn)A到平面PEF的距離為:

              

               所以點(diǎn)A到平面PEF的距離為…………8分

           (III)依題意為平面PAF的一個法向量,

               設(shè)二面角E―PF―A的大小為(由圖知為銳角)

               則,…………10分

               即二面角E―PF―A的大小…………12分

        20.解:(I)依題意有:  ①

               所以當(dāng)  ②……2分

               ①-②得:化簡得:

              

              

              

               所以數(shù)列是以2為公差的等差數(shù)列!4分

               故…………5分

               設(shè)

               是公比為64的等比數(shù)列

              

               …………8分

           (II)……9分

               …………10分

               …………11分

               …………12分

        21.解:(I)設(shè),則依題意有:

              

               故曲線C的方程為…………4分

               注:若直接用

               得出,給2分。

           (II)設(shè),其坐標(biāo)滿足

              

               消去…………※

               故…………5分

              

               而

              

               化簡整理得…………7分

               解得:時方程※的△>0

              

           (III)

              

              

              

               因?yàn)锳在第一象限,故

               由

               故

               即在題設(shè)條件下,恒有…………12分

        22.解:(I)…………3分

               處的切線互相平行

               …………5分

              

               …………6分

           (II)

              

               令

              

              

               當(dāng)

               是單調(diào)增函數(shù)!9分

              

              

              

               恒成立,

               …………10分

               值滿足下列不等式組

                ①,或

               不等式組①的解集為空集,解不等式組②得

               綜上所述,滿足條件的…………12分

         

         

         

         


        同步練習(xí)冊答案