任作一條與y軸不垂直的直線交軌跡于A.B兩點.在x軸上是否存在點M.使得MF平分∠AMB.若存在.求出點M的坐標,若不存在.請說明理由. 查看更多

 

題目列表(包括答案和解析)

(2010•河東區(qū)一模)在四邊形ABCD中,已知A(0,0),D(0,4)點B在x軸上.BC∥AD,且對角線AC⊥BD.
(1)求點C的軌跡T的方程;
(2)若點P是直線y=2x一5上任意一點,過點p作點C的軌跡T的兩切線PE、PF、E、F為切點.M為EF的中點.求證:PM∥Y軸或PM與y軸重合:
(3)在(2)的條件下,直線EF是否恒過一定點?若是,請求出這個定點的坐標;若不是.請說明理由.

查看答案和解析>>

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右頂點分別為A、B,右焦點為F(
3
,0),
一條漸近線的方程為y=-
2
2
x
,點P為雙曲線上不同于A、B的任意一點,過P作x軸的垂線交雙曲線于另一點Q.
(I)求雙曲線C的方程;
(Ⅱ)求直線AP與直線BQ的交點M的軌跡E的方程;
(Ⅲ)過點N(l,0)作直線l與(Ⅱ)中軌跡E交于不同兩點R、S,已知點T(2,0),設
NR
NS
,當λ∈[-2,-1]時,求|
TR
+
TS
|
的取值范圍.

查看答案和解析>>

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
2
,一個焦點坐標為F(-
3
,0)

(1)求橢圓C1的方程;
(2)點N是橢圓的左頂點,點P是橢圓C1上不同于點N的任意一點,連接
NP并延長交橢圓右準線與點T,求
TP
NP
的取值范圍;
(3)設曲線C2:y=x2-1與y軸的交點為M,過M作兩條互相垂直的直線與曲線C2、橢圓C1相交于點A、D和B、E,(如圖),記△MAB、
△MDE的面積分別是S1,S2,當
S1
S2
=
27
64
時,求直線AB的方程.

查看答案和解析>>


同步練習冊答案