10.已知定點(diǎn)是橢圓的兩個焦點(diǎn),若直線與橢圓有公共點(diǎn).則當(dāng)橢圓的長軸最短時其短軸的長為 A.3 B.4 C.6 D.8 查看更多

 

題目列表(包括答案和解析)

已知定點(diǎn)是橢圓的兩個焦點(diǎn),若直線與橢圓有公共點(diǎn),則當(dāng)橢圓的長軸最短時

其短軸的長為      

A.3                     B.4                     C.6                     D.8

查看答案和解析>>

已知點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)M(m,0)、N(0,n)分別是x軸、y軸上的動點(diǎn),且滿足.若點(diǎn)P滿足

(1)求點(diǎn)P的軌跡C的方程;

(2)設(shè)過點(diǎn)F任作一直線與點(diǎn)P的軌跡交于A、B兩點(diǎn),直線OA、OB與直線x=-a分別交于點(diǎn)S、T(O為坐標(biāo)原點(diǎn)),試判斷是否為定值?若是,求出這個定值;若不是,請說明理由.

查看答案和解析>>

已知點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)M(m,0)、N(0,n)分別是x軸、y軸上的動點(diǎn),且滿足.若點(diǎn)P滿足

(Ⅰ)求點(diǎn)P的軌跡C的方程;

(Ⅱ)設(shè)過點(diǎn)F任作一直線與點(diǎn)P的軌跡交于A、B兩點(diǎn),直線OA、OB與直線x=-a分別交于點(diǎn)S、T(O為坐標(biāo)原點(diǎn)),試判斷是否為定值?若是,求出這個定值;若不是,請說明理由.

查看答案和解析>>

精英家教網(wǎng)定義:由橢圓的兩個焦點(diǎn)和短軸的一個頂點(diǎn)組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓C1
x2
4
+y2=1

(1)若橢圓C2
x2
16
+
y2
4
=1
,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請說明理由;
(2)寫出與橢圓C1相似且短半軸長為b的橢圓Cb的方程;若在橢圓Cb上存在兩點(diǎn)M、N關(guān)于直線y=x+1對稱,求實(shí)數(shù)b的取值范圍?
(3)如圖:直線y=x與兩個“相似橢圓”M:
x2
a2
+
y2
b2
=1
Mλ
x2
a2
+
y2
b2
=λ2(a>b>0,0<λ<1)
分別交于點(diǎn)A,B和點(diǎn)C,D,試在橢圓M和橢圓Mλ上分別作出點(diǎn)E和點(diǎn)F(非橢圓頂點(diǎn)),使△CDF和△ABE組成以λ為相似比的兩個相似三角形,寫出具體作法.(不必證明)

查看答案和解析>>

橢圓的方程為,離心率為,且短軸一端點(diǎn)和兩焦點(diǎn)構(gòu)成的三角形面積為1,拋物線的方程為,拋物線的焦點(diǎn)F與橢圓的一個頂點(diǎn)重合.
(1)求橢圓和拋物線的方程;
(2)過點(diǎn)F的直線交拋物線于不同兩點(diǎn)A,B,交y軸于點(diǎn)N,已知的值.
(3)直線交橢圓于不同兩點(diǎn)P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點(diǎn)),若點(diǎn)S滿足,判定點(diǎn)S是否在橢圓上,并說明理由.

查看答案和解析>>

一.選擇題

題號

10

11

12

答案

C

C

A

D

C

B

A

D

D

A

二.13.      14.      15.     16.(萬元)

三.17.(I) 由

代入 得:     

整理得:                  (5分)

(II)由 

        由余弦定理得:

       -----------------------------   (9分)

  

       ------   (12分)

18.(Ⅰ)  的分布列.   

   2

   3

   4

   5

    6

p

 

 

                                - --------- ------   (4分)

(Ⅱ)設(shè)擲出的兩枚骰子的點(diǎn)數(shù)同是為事件

     同擲出1的概率,同擲出2的概率,同擲出3的概率

所以,擲出的兩枚骰子的點(diǎn)數(shù)相同的概率為P= 。ǎ阜郑

(Ⅲ)

時)

 

  2

  3

  4

  5 

  6

 

   3

   6

    6

   6

    6

 p

   

 

 

 

 

時)

 

 。

  3

  4

  5 

 。

 

   2

   5

    8

   8

    8

 p

   

 

 

 

 

時)

 

 。

  3

  4

  5 

 。

 

   1

   4

    7

  10

    10

 p

   

 

 

 

 

時, 最大為                             (12分)

19.(Ⅰ)

   

    兩兩相互垂直, 連結(jié)并延長交于F.

   

 

    同理可得

  

  

  

          ------------  (6分)

(Ⅱ)的重心

    F是SB的中點(diǎn)

  

  

   梯形的高

        ---     (12分)

       【注】可以用空間向量的方法

20.設(shè)2,f (a1),  f (a2),  f (a3), …,f (an),  2n+4的公差為d,則2n+4=2+(n+2-1)d   d=2,

 

……………………(4分)

   (2),

 

       --------------------              (8分)

 

21.(Ⅰ)∵直線的斜率為1,拋物線的焦點(diǎn) 

    ∴直線的方程為

   由

  設(shè)

  則

  又

       

  故 夾角的余弦值為    -----------------   (6分)

(Ⅱ)由

  即得:

  由 

從而得直線的方程為

 ∴軸上截距為

  ∵的減函數(shù)

∴  從而得

軸上截距的范圍是  ------------ (12分)

22.(Ⅰ) 

    在直線上,

                ??????????????      (4分)

(Ⅱ)

 上是增函數(shù),上恒成立

 所以得         ??????????????? 。ǎ阜郑

(Ⅲ)的定義域是,

①當(dāng)時,上單增,且,無解;

 ②當(dāng)時,上是增函數(shù),且,

有唯一解;

③當(dāng)時,

那么在單減,在單增,

    時,無解;

     時,有唯一解 ;

     時,

     那么在上,有唯一解

而在上,設(shè)

  

即得在上,有唯一解.

綜合①②③得:時,有唯一解;

        時,無解;

       時,有且只有二解.

 

               ??????????????    。ǎ保捶郑

 


同步練習(xí)冊答案