題目列表(包括答案和解析)
已知函數(shù)=.
(Ⅰ)當(dāng)時(shí),求不等式 ≥3的解集;
(Ⅱ) 若≤的解集包含,求的取值范圍.
【命題意圖】本題主要考查含絕對(duì)值不等式的解法,是簡(jiǎn)單題.
【解析】(Ⅰ)當(dāng)時(shí),=,
當(dāng)≤2時(shí),由≥3得,解得≤1;
當(dāng)2<<3時(shí),≥3,無(wú)解;
當(dāng)≥3時(shí),由≥3得≥3,解得≥8,
∴≥3的解集為{|≤1或≥8};
(Ⅱ) ≤,
當(dāng)∈[1,2]時(shí),==2,
∴,有條件得且,即,
故滿(mǎn)足條件的的取值范圍為[-3,0]
當(dāng)0<x≤時(shí),4x<logax,則a的取值范圍是
(A)(0,) (B)(,1) (C)(1,) (D)(,2)
【解析】當(dāng)時(shí),顯然不成立.若時(shí)
當(dāng)時(shí),,此時(shí)對(duì)數(shù),解得,根據(jù)對(duì)數(shù)的圖象和性質(zhì)可知,要使在時(shí)恒成立,則有,如圖選B.
(本小題滿(mǎn)分12分)已知函數(shù)是定義在上的奇函數(shù),且,
(1)確定函數(shù)的解析式;
(2)用定義證明在上是增函數(shù);
(3)解不等式.
【解析】第一問(wèn)利用函數(shù)的奇函數(shù)性質(zhì)可知f(0)=0
結(jié)合條件,解得函數(shù)解析式
第二問(wèn)中,利用函數(shù)單調(diào)性的定義,作差變形,定號(hào),證明。
第三問(wèn)中,結(jié)合第二問(wèn)中的單調(diào)性,可知要是原式有意義的利用變量大,則函數(shù)值大的關(guān)系得到結(jié)論。
設(shè)點(diǎn)是拋物線(xiàn)的焦點(diǎn),是拋物線(xiàn)上的個(gè)不同的點(diǎn)().
(1) 當(dāng)時(shí),試寫(xiě)出拋物線(xiàn)上的三個(gè)定點(diǎn)、、的坐標(biāo),從而使得
;
(2)當(dāng)時(shí),若,
求證:;
(3) 當(dāng)時(shí),某同學(xué)對(duì)(2)的逆命題,即:
“若,則.”
開(kāi)展了研究并發(fā)現(xiàn)其為假命題.
請(qǐng)你就此從以下三個(gè)研究方向中任選一個(gè)開(kāi)展研究:
① 試構(gòu)造一個(gè)說(shuō)明該逆命題確實(shí)是假命題的反例(本研究方向最高得4分);
② 對(duì)任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說(shuō)明你的理由(本研究方向最高得8分);
③ 如果補(bǔ)充一個(gè)條件后能使該逆命題為真,請(qǐng)寫(xiě)出你認(rèn)為需要補(bǔ)充的一個(gè)條件,并說(shuō)明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評(píng)分說(shuō)明】本小題若填空不止一個(gè)研究方向,則以實(shí)得分最高的一個(gè)研究方向的得分作為本小題的最終得分.
【解析】第一問(wèn)利用拋物線(xiàn)的焦點(diǎn)為,設(shè),
分別過(guò)作拋物線(xiàn)的準(zhǔn)線(xiàn)的垂線(xiàn),垂足分別為.
由拋物線(xiàn)定義得到
第二問(wèn)設(shè),分別過(guò)作拋物線(xiàn)的準(zhǔn)線(xiàn)垂線(xiàn),垂足分別為.
由拋物線(xiàn)定義得
第三問(wèn)中①取時(shí),拋物線(xiàn)的焦點(diǎn)為,
設(shè),分別過(guò)作拋物線(xiàn)的準(zhǔn)線(xiàn)垂線(xiàn),垂足分別為.由拋物線(xiàn)定義得
,
則,不妨取;;;
解:(1)拋物線(xiàn)的焦點(diǎn)為,設(shè),
分別過(guò)作拋物線(xiàn)的準(zhǔn)線(xiàn)的垂線(xiàn),垂足分別為.由拋物線(xiàn)定義得
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image010.png">,所以,
故可取滿(mǎn)足條件.
(2)設(shè),分別過(guò)作拋物線(xiàn)的準(zhǔn)線(xiàn)垂線(xiàn),垂足分別為.
由拋物線(xiàn)定義得
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image017.png">
;
所以.
(3) ①取時(shí),拋物線(xiàn)的焦點(diǎn)為,
設(shè),分別過(guò)作拋物線(xiàn)的準(zhǔn)線(xiàn)垂線(xiàn),垂足分別為.由拋物線(xiàn)定義得
,
則,不妨取;;;,
則,
.
故,,,是一個(gè)當(dāng)時(shí),該逆命題的一個(gè)反例.(反例不唯一)
② 設(shè),分別過(guò)作
拋物線(xiàn)的準(zhǔn)線(xiàn)的垂線(xiàn),垂足分別為,
由及拋物線(xiàn)的定義得
,即.
因?yàn)樯鲜霰磉_(dá)式與點(diǎn)的縱坐標(biāo)無(wú)關(guān),所以只要將這點(diǎn)都取在軸的上方,則它們的縱坐標(biāo)都大于零,則
,
而,所以.
(說(shuō)明:本質(zhì)上只需構(gòu)造滿(mǎn)足條件且的一組個(gè)不同的點(diǎn),均為反例.)
③ 補(bǔ)充條件1:“點(diǎn)的縱坐標(biāo)()滿(mǎn)足 ”,即:
“當(dāng)時(shí),若,且點(diǎn)的縱坐標(biāo)()滿(mǎn)足,則”.此命題為真.事實(shí)上,設(shè),
分別過(guò)作拋物線(xiàn)準(zhǔn)線(xiàn)的垂線(xiàn),垂足分別為,由,
及拋物線(xiàn)的定義得,即,則
,
又由,所以,故命題為真.
補(bǔ)充條件2:“點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對(duì)稱(chēng)”,即:
“當(dāng)時(shí),若,且點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對(duì)稱(chēng),則”.此命題為真.(證略)
已知,(其中)
⑴求及;
⑵試比較與的大小,并說(shuō)明理由.
【解析】第一問(wèn)中取,則; …………1分
對(duì)等式兩邊求導(dǎo),得
取,則得到結(jié)論
第二問(wèn)中,要比較與的大小,即比較:與的大小,歸納猜想可得結(jié)論當(dāng)時(shí),;
當(dāng)時(shí),;
當(dāng)時(shí),;
猜想:當(dāng)時(shí),運(yùn)用數(shù)學(xué)歸納法證明即可。
解:⑴取,則; …………1分
對(duì)等式兩邊求導(dǎo),得,
取,則。 …………4分
⑵要比較與的大小,即比較:與的大小,
當(dāng)時(shí),;
當(dāng)時(shí),;
當(dāng)時(shí),; …………6分
猜想:當(dāng)時(shí),,下面用數(shù)學(xué)歸納法證明:
由上述過(guò)程可知,時(shí)結(jié)論成立,
假設(shè)當(dāng)時(shí)結(jié)論成立,即,
當(dāng)時(shí),
而
∴
即時(shí)結(jié)論也成立,
∴當(dāng)時(shí),成立。 …………11分
綜上得,當(dāng)時(shí),;
當(dāng)時(shí),;
當(dāng)時(shí),
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com