解:(1)由題意可得..由焦半徑公式.得 查看更多

 

題目列表(包括答案和解析)

如圖,已知圓錐體的側(cè)面積為,底面半徑互相垂直,且,是母線的中點.

(1)求圓錐體的體積;

(2)異面直線所成角的大。ńY(jié)果用反三角函數(shù)表示).

【解析】本試題主要考查了圓錐的體積和異面直線的所成的角的大小的求解。

第一問中,由題意,,故

從而體積.2中取OB中點H,聯(lián)結(jié)PH,AH.

由P是SB的中點知PH//SO,則(或其補角)就是異面直線SO與PA所成角.

由SO平面OAB,PH平面OAB,PHAH.在OAH中,由OAOB得;

中,,PH=1/2SB=2,,

,所以異面直線SO與P成角的大arctan

解:(1)由題意,

從而體積.

(2)如圖2,取OB中點H,聯(lián)結(jié)PH,AH.

由P是SB的中點知PH//SO,則(或其補角)就是異面直線SO與PA所成角.

由SO平面OAB,PH平面OAB,PHAH.

OAH中,由OAOB得;

中,,PH=1/2SB=2,,

,所以異面直線SO與P成角的大arctan

 

查看答案和解析>>

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(I)求橢圓的方程;

(II)若過點(2,0)的直線與橢圓相交于兩點,設為橢圓上一點,且滿足O為坐標原點),當 時,求實數(shù)的取值范圍.

【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運用。

第一問中,利用

第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的不等式,表示得到t的范圍。

解:(1)由題意知

 

查看答案和解析>>

如圖,邊長為2的正方形ABCD,E是BC的中點,沿AE,DE將折起,使得B與C重合于O.

(Ⅰ)設Q為AE的中點,證明:QDAO;

(Ⅱ)求二面角O—AE—D的余弦值.

【解析】第一問中,利用線線垂直,得到線面垂直,然后利用性質(zhì)定理得到線線垂直。取AO中點M,連接MQ,DM,由題意可得:AOEO, DOEO,

AO=DO=2.AODM

因為Q為AE的中點,所以MQ//E0,MQAO

AO平面DMQ,AODQ

第二問中,作MNAE,垂足為N,連接DN

因為AOEO, DOEO,EO平面AOD,所以EODM

,因為AODM ,DM平面AOE

因為MNAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

(1)取AO中點M,連接MQ,DM,由題意可得:AOEO, DOEO,

AO=DO=2.AODM

因為Q為AE的中點,所以MQ//E0,MQAO

AO平面DMQ,AODQ

(2)作MNAE,垂足為N,連接DN

因為AOEO, DOEO,EO平面AOD,所以EODM

,因為AODM ,DM平面AOE

因為MNAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

二面角O-AE-D的平面角的余弦值為

 

查看答案和解析>>

在等比數(shù)列中,,;

(1)求數(shù)列的通項公式; (2)求數(shù)列的前項和

【解析】第一問中利用等比數(shù)列中,,兩項確定通項公式即可

第二問中,在第一問的基礎上,然后求和。

解:(1)由題意得到:

       ……6分

(2)      ……①

   …… ②

①-②得到

 

查看答案和解析>>

關(guān)于函數(shù)(x∈R),有下列四個命題:
(1)由,可得必是π的整數(shù)倍;
(2)y=f(x)的表達式可改寫為;
(3)y=f(x)的圖像關(guān)于x=對稱;
(4)y=f(x)的圖像關(guān)于點(,0)對稱,
其中正確的是(    )。(填序號)

查看答案和解析>>


同步練習冊答案