③在區(qū)間.上各有一根.則 查看更多

 

題目列表(包括答案和解析)

A地某校準備組織學生及學生家長到B地進行社會實踐,為便于管理,所有人員必須
乘坐在同一列火車上;根據(jù)報名人數(shù),若都買一等座單程火車票需17010元,若都買二等座單程火車票且花錢最少,則需11220元;已知學生家長與教師的人數(shù)之比為2:1,從A到B的火車票價格(部分)如下表所示:
運行區(qū)間 公布票價 學生票
上車站 下車站 一等座 二等座 二等座
A B 81(元) 68(元) 51(元)
(1)參加社會實踐的老師、家長與學生各有多少人?
(2)由于各種原因,二等座火車票單程只能買x張(x小于參加社會實踐的人數(shù)),其余的須買一等座火車票,在保證每位參與人員都有座位坐的前提下,請你設計最經(jīng)濟的購票方案,并寫出購買火車票的總費用(單程)y與x之間的函數(shù)關系式.
(3)請你做一個預算,按第(2)小題中的購票方案,購買一個單程火車票至少要花多少錢?最多要花多少錢?

查看答案和解析>>

某高中地處縣城,學校規(guī)定家到學校的路程在
以內的學生可以走讀,因交通便利,所以走讀生人數(shù)很多,
該校學生會先后次對走讀生的午休情況作了統(tǒng)計,得到
如下資料:
①若把家到學校的距離分為五個區(qū)間:、、、、,則調查數(shù)據(jù)表明午休的走讀生分布在各個區(qū)間內的頻率相對穩(wěn)定,得到了如右圖所示的頻率分布直方圖;
②走讀生是否午休與下午開始上課的時間有著密切的關系. 下表是根據(jù)次調查數(shù)據(jù)得到的下午開始上課時間與平均每天午休的走讀生人數(shù)的統(tǒng)計表.

下午開始上課時間





平均每天午休人數(shù)





(Ⅰ)若隨機地調查一位午休的走讀生,其家到學校的路程(單位:里)在的概率是多少?
(Ⅱ)如果把下午開始上課時間作為橫坐標,然后上課時間每推遲分鐘,橫坐標增加2,并以平均每天午休人數(shù)作為縱坐標,試列出的統(tǒng)計表,并根據(jù)表中的數(shù)據(jù)求平均每天午休人數(shù)與上課時間之間的線性回歸方程
(Ⅲ)預測當下午上課時間推遲到時,家距學校的路程在4里路以下的走讀生中約有多少人午休?
(注:線性回歸直線方程系數(shù)公式

查看答案和解析>>

某高中地處縣城,學校規(guī)定家到學校的路程在

以內的學生可以走讀,因交通便利,所以走讀生人數(shù)很多,

該校學生會先后次對走讀生的午休情況作了統(tǒng)計,得到

如下資料:

①若把家到學校的距離分為五個區(qū)間:、、、、,則調查數(shù)據(jù)表明午休的走讀生分布在各個區(qū)間內的頻率相對穩(wěn)定,得到了如右圖所示的頻率分布直方圖;

②走讀生是否午休與下午開始上課的時間有著密切的關系. 下表是根據(jù)次調查數(shù)據(jù)得到的下午開始上課時間與平均每天午休的走讀生人數(shù)的統(tǒng)計表.

下午開始上課時間

平均每天午休人數(shù)

(Ⅰ)若隨機地調查一位午休的走讀生,其家到學校的路程(單位:里)在的概率是多少?

(Ⅱ)如果把下午開始上課時間作為橫坐標,然后上課時間每推遲分鐘,橫坐標增加2,并以平均每天午休人數(shù)作為縱坐標,試列出的統(tǒng)計表,并根據(jù)表中的數(shù)據(jù)求平均每天午休人數(shù)與上課時間之間的線性回歸方程;

(Ⅲ)預測當下午上課時間推遲到時,家距學校的路程在4里路以下的走讀生中約有多少人午休?

(注:線性回歸直線方程系數(shù)公式

 

查看答案和解析>>

某高中地處縣城,學校規(guī)定家到學校的路程在
以內的學生可以走讀,因交通便利,所以走讀生人數(shù)很多,
該校學生會先后次對走讀生的午休情況作了統(tǒng)計,得到
如下資料:
①若把家到學校的距離分為五個區(qū)間:、、、,則調查數(shù)據(jù)表明午休的走讀生分布在各個區(qū)間內的頻率相對穩(wěn)定,得到了如右圖所示的頻率分布直方圖;
②走讀生是否午休與下午開始上課的時間有著密切的關系. 下表是根據(jù)次調查數(shù)據(jù)得到的下午開始上課時間與平均每天午休的走讀生人數(shù)的統(tǒng)計表.
下午開始上課時間





平均每天午休人數(shù)





(Ⅰ)若隨機地調查一位午休的走讀生,其家到學校的路程(單位:里)在的概率是多少?
(Ⅱ)如果把下午開始上課時間作為橫坐標,然后上課時間每推遲分鐘,橫坐標增加2,并以平均每天午休人數(shù)作為縱坐標,試列出的統(tǒng)計表,并根據(jù)表中的數(shù)據(jù)求平均每天午休人數(shù)與上課時間之間的線性回歸方程;
(Ⅲ)預測當下午上課時間推遲到時,家距學校的路程在4里路以下的走讀生中約有多少人午休?
(注:線性回歸直線方程系數(shù)公式

查看答案和解析>>

精英家教網(wǎng)某高中地處縣城,學校規(guī)定家到學校的路程在10里以內的學生可以走讀,因交通便利,所以走讀生人數(shù)很多.該校學生會先后5次對走讀生的午休情況作了統(tǒng)計,得到如下資料:
①若把家到學校的距離分為五個區(qū)間:[0,2)、[2,4)、[4,6)、[6,8)、[8,10),則調查數(shù)據(jù)表明午休的走讀生分布在各個區(qū)間內的頻率相對穩(wěn)定,得到了如圖所示的頻率分布直方圖;
②走讀生是否午休與下午開始上課的時間有著密切的關系.下表是根據(jù)5次調查數(shù)據(jù)得到的下午開始上課時間與平均每天午休的走讀生人數(shù)的統(tǒng)計表.
下午開始上課時間 1:30 1:40 1:50 2:00 2:10
平均每天午休人數(shù) 250 350 500 650 750
(Ⅰ)若隨機地調查一位午休的走讀生,其家到學校的路程(單位:里)在[2,6)的概率是多少?
(Ⅱ)如果把下午開始上課時間1:30作為橫坐標0,然后上課時間每推遲10分鐘,橫坐標x增加1,并以平均每天午休人數(shù)作為縱坐標y,試列出x與y的統(tǒng)計表,并根據(jù)表中的數(shù)據(jù)求平均每天午休人數(shù)
y
與上課時間x之間的線性回歸方程
y
=bx+a;
(Ⅲ)預測當下午上課時間推遲到2:20時,家距學校的路程在6里路以上的走讀生中約有多少人午休?
(注:線性回歸直線方程系數(shù)公式b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,a=
.
y
-b
.
x
.)

查看答案和解析>>


同步練習冊答案