的關(guān)于的條件是 A.k≤8 B.k<8 C.k>8 D.k=9 查看更多

 

題目列表(包括答案和解析)

下面框圖所給的程序運(yùn)行結(jié)果為s=28,那么判斷框中應(yīng)填入的關(guān)于k的條件是( 。

查看答案和解析>>

若下面框圖所給的程序運(yùn)行結(jié)果為S=20,那么判斷框中應(yīng)填入的關(guān)于k的條件是

[     ]

A.k=9
B.k≤8
C.k<8
D.k>8

查看答案和解析>>

若下圖所給算法框圖的運(yùn)行結(jié)果為S=90,那么判斷框中應(yīng)填入的關(guān)于k的條件是

[  ]
A.

k=9

B.

k≤8

C.

k<8

D.

k>8

查看答案和解析>>

如圖所示的程序框圖,若輸出的結(jié)果為S=90,那么判斷框中可以填入的關(guān)于k的條件是

[  ]
A.

k=9?

B.

k≥8?

C.

k<8?

D.

k>8

查看答案和解析>>

精英家教網(wǎng)給出下列四個(gè)命題:
①已知函數(shù)y=2sin(x+φ)(0<φ<π)的圖象如圖所示,則?=
π
6
5
6
π
;
②已知O、A、B、C是平面內(nèi)不同的四點(diǎn),且
OA
OB
OC
,則α+β=1是A、B、C三點(diǎn)共線的充要條件;
③若數(shù)列an恒滿足
a
2
n+1
a
2
n
=p
(p為正常數(shù),n∈N*),則稱數(shù)列an是“等方比數(shù)列”.根據(jù)此定義可以斷定:若數(shù)列an是“等方比數(shù)列”,則它一定是等比數(shù)列;
④求解關(guān)于變量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到該方程中變量n的所有取值的表達(dá)式為n=
1
12
(4k+8)

(k∈N*).
其中正確命題的序號(hào)是
 

查看答案和解析>>

 

一、選擇題:

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

B

B

B

C

A

D

B

C

C

B

 

二、填空題:

題號(hào)

11

12

13

14

15

 

答案

 

1000

6ec8aac122bd4f6e

6ec8aac122bd4f6e

 

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說(shuō)明、證明過(guò)程和演算步驟.

16.(本小題滿分12分)

解:(1)由=,得:=,

              即:,     

        又∵0<6ec8aac122bd4f6e     ∴=6ec8aac122bd4f6e.             

   (2)直線6ec8aac122bd4f6e方程為:

                            ,

點(diǎn)6ec8aac122bd4f6e到直線6ec8aac122bd4f6e的距離為:

              ∵

              ∴       ∴ 

              又∵0<6ec8aac122bd4f6e,        

∴sin>0,cos<0

              ∴ 

∴sin6ec8aac122bd4f6e-cos6ec8aac122bd4f6e=   

17.(本小題滿分12分)

解:(1)某同學(xué)被抽到的概率為

設(shè)有名男同學(xué),則男、女同學(xué)的人數(shù)分別為

(2)把名男同學(xué)和名女同學(xué)記為,則選取兩名同學(xué)的基本事件有種,其中有一名女同學(xué)的有

選出的兩名同學(xué)中恰有一名女同學(xué)的概率為

(3),

,

第二同學(xué)的實(shí)驗(yàn)更穩(wěn)定

                              

18.(本小題滿分14分)

解:(1)分別是棱中點(diǎn)   

      平面

      是棱的中點(diǎn)            

      平面

      平面平面

      (2)  

      同理

            

        

      ,       

      ,,    

       

      19.(本小題滿分14分)

      解:(1)由……①,得……②

      ②-①得:    

      所以,求得     

      (2),    

                                                           

       

       

      20.(本小題滿分14分)

      解:(1)由題設(shè)知:

      得:

      解得,橢圓的方程為

      (2)

                  

      從而將求的最大值轉(zhuǎn)化為求的最大值

      是橢圓上的任一點(diǎn),設(shè),則有

      ,

      當(dāng)時(shí),取最大值   的最大值為

       

      21.(本小題滿分14分)

      解:(1)由,,得,

      所以,

      (2)由題設(shè)得

      對(duì)稱軸方程為,

      由于上單調(diào)遞增,則有

      (Ⅰ)當(dāng)時(shí),有

      (Ⅱ)當(dāng)時(shí),

      設(shè)方程的根為

      ①若,則,有    解得

      ②若,即,有;

                

      由①②得 。

      綜合(Ⅰ), (Ⅱ)有 

       


      同步練習(xí)冊(cè)答案