△ABC中.2sinBcosC=sinA. ⑴求證:B=C ⑵如果A=120º.a=1.求此三角形的面積. 查看更多

 

題目列表(包括答案和解析)

設(shè)
a
=(2cos
ωx
2
,2sin
ωx
2
),
b
=(sin
ωx
2
,
3
sin
ωx
2
),ω>0
,記函數(shù)f(x)=
a
b
-
3
4
|
a
|2
,且以π為最小正周期.
(Ⅰ)求ω的值;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對邊,已知a=1,b=
2
,f(A)=0,求角C的值.

查看答案和解析>>

在△ABC中,內(nèi)角A,B,C對邊的邊長分別是a,b,c,已知c=2,C=
π
3

(1)若△ABC的面積等于
3
,試判斷△ABC的形狀并說明理由
(2)若sin C+sin(B-A)=2sin 2A,求a,b.

查看答案和解析>>

已知函數(shù)f(x)=
a
b
,其中
a
=(2sinωx,-1),
b
=(2sin(
3
-ωx),1)
,ω>0,f(x)的圖象與直線y=-2的交點(diǎn)的橫坐標(biāo)成公差為π的等差數(shù)列.
(1)求f(x)的解析式;
(2)若在△ABC中,A=
3
,b+c=3,F(xiàn)(A)=2,求△ABC的面積.

查看答案和解析>>

下面有五個命題:
(1)要得到y=2sin(2x+
3
)
圖象,需要將函數(shù)y=2sin2x圖象向左平移
3
個單位;
(2)在△ABC中,表達(dá)式cos(B+C)+cosA為常數(shù);
(3)設(shè)
a0
,
b0
分別是單位向量,則|
a0
+
b0
|=2

(4)y=cosx(0≤x≤2π)的圖象和直線y=1圍成一個封閉的平面圖形,該圖形的面積是2π.
其中真命題的序號是
(2)(4)
(2)(4)
(寫出所有真命題的編號)

查看答案和解析>>

(2012•瀘州一模)已知函數(shù)f(x)=2sinωx(
3
cosωx-sinωx)(ω>0,x∈R)的最小正周期為π.
(Ⅰ)求ω的值;
(Ⅱ)在△ABC中,角A、B、C所對的邊分別為a、b、c,若△ABC的面積為
3
3
4
,b=
3
,f(B)=1,求a、c的值.

查看答案和解析>>


同步練習(xí)冊答案